登录
首页 » Others » mes开发源码

mes开发源码

于 2020-11-28 发布
0 174
下载积分: 1 下载次数: 2

代码说明:

mes开发源码

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab GPS水准高拟合
    基于matlab GPS水准高程拟合计算,绘图
    2020-12-05下载
    积分:1
  • 最小二乘法倾斜校正
    该程序用最小二乘法实现倾斜校正,校正效果好,程序简单易懂
    2020-12-09下载
    积分:1
  • 语音识别系统设计
    基于matlab语音识别系统,包含音频文件,特征提取选取mfcc,基于DTW的识别技术。用于孤立词的识别。
    2020-11-27下载
    积分:1
  • verilog HDB3
    课程设计。基于quartus的verilog的HDB3编解码源代码(已验证)。
    2020-12-11下载
    积分:1
  • STM32单片机WS2812B驱动序灯效
    代码主要是基于stm32开发,包括两路ws2812b初始化代码,以及呼吸灯、跑马灯、彩虹灯等灯效程序,均是用pwm+dma的方式发送数据,不占用内存,本程序已用在项目中,可稳定运行。
    2020-11-27下载
    积分:1
  • RTCM3.3协议全
    全新RTCM3.3协议完整版RTCM STANDARD 10403.3DIFFERENTIAL GNSS(GLOBAL NAVIGATION SATELLITE SYSTEMS)SERVICES – VERSION 3DEVELOPED BYRTCM SPECIAL COMMITTEE NO. 104OCTOBER 7, 2016COPYRIGHT©2016 RTCMRadio Technical Commission for Maritime Services1611 N. Kent St., Suite 605Arlington, Virginia 22209-214RTCM Paper 141-2016-SC104-STD000ocRTCMco00c30RTCM 10403. 3, Differential GNSS Global Navigation Satellite Systems)Services- Version 3, October 7, 2016This standard (referred to as version 3 has been developed by rtCm special Committee 104 as a moreefficient alternative to the standards entitled rtcm recommended standards for diffe rentialRecommended Standards for Differential gNss Global Navigation Satellite Systems Service, Version 2.x(Current version is 2. 3, now designated as RTCM 10402. 3. Service providers and vendors represented onthe SC104 Committee wanted a new standard that would be more efficient, easy to use, and more easilyadaptable to new situations. The main complaint was that the version 2. x parity scheme, which useswords with 24 bits of data followed by 6 bits of parity, was wasteful of bandwidth. Another complaint wasthat the parity was not independent from word to word. Still another was that even with so many bitsdevoted to parity the actual integrity of the message was not as high as it should be. Plus, 30-bit wordsare awkward to handle. the new standard version 3 is intended to correct these weaknessesUnlike Version 2. x, this standard does not include tentative messages The messages in Version 3 haveundergone testing for validity and interoperability and are considered to be permanent. amendments tothe standard may change the meaning of reserved bits or provide additional clarifying text, but no changeswill be made in the data fields. Changes will require new messages to be developed. In addition to themessages described in the current standard the committee continues to develop new messages whichare described in separately published amendments and periodically gathered into a new edition of thestandard. RTCM 10403x for dgNSS services is proving useful in supporting highly accurate differentialand kinematic positioning as well as a wide range of navigation applications worldwideNote that Version 3 messages are not compatible with Version 2. x. Since many receivers have beendesigned and programmed for use with Version 2. x messages, rtCm is maintaining both standards0402 3 and 10403, 3 as" standardsVersion 3.0The initial edition consisted primarily of messages designed to support real-time kinematic (RTK)operations. The reason for this emphasis is that rtk operation involves broadcasting a lot of informationand thus benefits the most from an efficient data format. Version 3.0 provided messages that supportGPS and gloNaSs rTK operations including code and carrier phase observables antenna parametersand ancillary system parametersVersion 3. 1(RTCM Standard 10403.1:The next edition, Version 3. 1 (RTCM Standard 10403. 1), incorporated GPS Network Corrections, whichenable a mobile receiver to obtain accurate rtk information valid over a large area. In addition, new GPSand GLoNaSS messages provide orbital parameters to assist in rapid acquisition a Unicode text messageis also provided for the transmission of textual data. Finally a set of messages are reserved for vendorswho want to encapsulate proprietary data in their broadcasts the gps Network Corrections enable amobile receiver to obtain accurate rtk information valid over a large area. the network rtk correctioninformation provided to a rover can be considered as interpolated corrections between the referencestations in the rtk network this interpolation is not perfect and varies with the actual conditions of theatmosphere. A residual interpolation error has to be expected. With sufficient redundancy in the RtKnetwork, the network server process can provide an estimate for residual interpolation errors. Suchquality estimates may be used by the rover to optimize the performance of rtk solutions The values maybe considered by the rover as a priori estimates only with sufficient tracking data available the rovermight be able to judge residual geometric and ionospheric errors itselfVersion 3. 1. Amendment 1:Amendments 1 was an extensive addition that adds rtcm messages containing transformation data andinformation about Coordinate reference Systems. For rtCm data supporting a rtk service, coordinatesare measured within the itrf or a regional realization surve yors and other users of rtk services mustnormally present their results in the coordinates of local datums. Therefore, coordinate transformationsare necessary. by having RTCM messages that contain transformation data and information about theCoordinate reference systems the users of the rtk service can obtain their results in the desired datumwithout any manual operations. the rtk service providers can then ensure that current information forthe computation of the transformations is always used. the convenience of this method will promote theacceptance of rtK servicesVersion 3. 1. amendment 2:Amendment 2 added residual error messages to support the use of Non-Physical or Computed referenceStations in a network rtk environmentVersion 3. 1. amendment 3:Amendment 3 addressed differences in the way gnss receiver manufacturers have implemented carrierphase encoding of some Version 3 messages so that carrier phase observations are in phase for all carrierphases of a specific frequency i e. they correct for quarter cycle phase shifts. others retain the quartercycle offset between the carrier phase observations in the data. this amendment documents the waydifferent manufacturers have handled the phase shift issue and prescribes a uniform approach for futureproducts.∨ersiⅰon3.1, Amendment4:Amendment 4 added sections 3.5.13 on glONASS Network rtK Correction Messages and 3.5. 14 on FKPNetwork Rtk Correction Messages Related revisions were also made elsewhere in the document.Version 3. 1. amendment 5Amendment 5 added section 3. 5. 12 on State Space Representation related revisions are also madeelsewhere in the document, along with some editorial correctionsVersion 3. 2(RTCM Standard 10403.2)Version 3.2 consolidates Version 3. 1 and all five amendments into a new edition, and it adds MultipleSignal Messages (MSM)as well. the Multiple Signal Message (MSm)format generates receiverobservables in the same way for all included satellite systems. the messages include compact and fullmessages for Pseudorange, PhaseRange, Carrier to Noise Ratio (standard and high resolution), andPhaseRangeratea table near the beginning of the standard lists which messages were included in each separate editionand amendment, so it should not be necessary for users to refer to older versions. Multiple signalMessages are a generic format that will be followed for all GNSs systems. version 3 originally consisted ofmessages for GPS and GLONASS, each in their own format Now with the imminent addition of signals forBeiDou, Galileo, and QZSS, as well as new signals provided by modernized GPS and GloNASS satellitesthe need for a consistent generic format became evident. service providers and users are urged to migrateto the MsM messages to make it easier to accommodate new gNss services(See The RTCM Multiple Signal Messages: A New Step in GNSS Data Standardization")Another newmessage is the gloNaSS Bias Information message. This message provides information which is intendedto compensate for the first-order inter-frequency phase range biases introduced by the reference receivercode- phase biasVersion 3.2, Amendment 1:Added Galileo F/NAv Satellite Ephemeris Data(msg. 1045 )and Bds MSM(msgs. 1121-1127)Version 3.2 amendment 2Added qzss ephemeris(msg. 1044 )and QZss MSm (msgs. 1111-1117Version 3. 3(RTCM Standard 10403.3)This new edition adds Satellite-Based Augmentation System Multiple Signal Messages to previouslydopted messages for GPS, GLONASS, Galileo, and QzssA new ephemeris message has been added for BeiDou(BDS)and a new I/NAV ephemeris message hasbeen added for Galileo. The new edition also reserves 100 messages be used exclusively by sc104 fornew message developmentFinally, the new edition makes consolidates previous amendments and makes numerous editorialImprovementsNavstar GPS Service, Version 2. x. Service providers and vendors represented on the scco000c30z1O2co00c30Contentsco00c30
    2020-06-27下载
    积分:1
  • 网络规划设计师论文范文50套
    网络规划设计师论文范文50套,包含云计算、大数据、物联网、三网融合等新一代网络技术(2010年)
    2021-05-07下载
    积分:1
  • 基于MATLAB的图像处理的课设计(图像处理系统)
    基于MATLAB的图像处理的课程设计 该系统为简易的图像处理系统,能完成图像处理的一切基本问题
    2020-12-08下载
    积分:1
  • 数据结构与算法分析C++描述第三版及其答案
    里面包含了《数据结构与算法分析C++描述第三版》和它的答案,共两个PDF文件
    2020-12-06下载
    积分:1
  • 网上购物系统可行性分析报告
    一、可行性研究报告一、可行性研究报告 11.引言 21.1编写目的 21.2项目背景 21.3定义 21.4参考资料 22.可行性研究的前提 22.1要求 22.2目标 22.3条件、假定和限制 22.4可行性研究方法 22.5决定可行性的主要因素 23.对现有系统的分析 23.1处理流程和数据流程 23.2工作负荷 23.3费用支出 23.4人员 23.5设备 24.所建议技术可行性分析 24.1对系统的简要描述 24.2与现有系统比较的优越性 24.3技术可行性评价 25.所建议系统经济可行性分析 25.1支出 25.2效益 25.3投资
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载