登录
首页 » Others » 基于遗传算法的MFC矩形排样UI

基于遗传算法的MFC矩形排样UI

于 2020-11-28 发布
0 140
下载积分: 1 下载次数: 1

代码说明:

最近参见华中赛,选了A题,钢构件的排料问题,问题解决期间用到了遗传算法,自己用VC写了一个,这个是界面部分

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 软件设计文档模板(SRS需求说明书,操作手册,软件需求规格说明书(Usecase),软件需求说明书,概要设计说明书,详细设计说明书,数据库设计说明书,测试计划,测试分析报告等)
    软件设计文档模板,包括:SRS需求说明书,操作手册,软件需求规格说明书(Usecase),软件需求说明书,概要设计说明书,详细设计说明书,数据库设计说明书,测试计划,测试分析报告等
    2021-05-06下载
    积分:1
  • 蓝牙音箱原理图
    蓝牙音箱原理图,通过自己整理的实用的蓝牙蓝牙音箱原理图
    2020-12-03下载
    积分:1
  • 基于EMD分解·和希尔伯特变换(HHT)的完整 MATLAB代码.rar
    【实例简介】Hilbert-Huang 变换是一种适用于分析非线性、非平稳信号的数据处理方法,它是由美籍华人 Huang 以及他的同事在 1998 年提出的,从本质上讲这种方法是要对一个信号进行平稳化处理,得到信号的时间-频率-能量特征。HHT 是近年来在信号处理领域中的一项重要突破。HHT 是分 EMD 和 Hilbert 变换两步来实现的,首先对非线性、非平稳信号进行 EMD 分解,逐级分解出原始信号中不同尺度的波动或变化趋势,这些具有不同特征尺度的一系列时间序列分量叫做本征模态函数(IMF),接着对每个 IMF 分量进行 Hilbert 变换。对于 EMD 分解得到的每个分量都有着不同的频率成分,通过对各分量的 Hilbert 变换能够得到具有物理意义的瞬时属性参数。 Hilbert谱表示的是信号幅值在整个频率段上随时间和频率的变化规律,Hilbert边际谱表示信号幅值在整个频率段上随频率的变化情况,它相当于傅里叶谱,但比傅里叶谱具有更高的频率分辨率。Hilbert边际谱是通过对Hilbert谱积分得到的。
    2021-11-25 00:43:24下载
    积分:1
  • 高校招生数据库系统设计
    通过计算机完成高等院校的招生录取工作,是一个复杂而又有代表性的数据库应用。其中涉及到大量考生和院校数据的录入、整理、存储以及由数据库应用程序来实现录取过程的自动化等工作。因为在校学生对高考录取过程都有一定程度的了解,所以我们选用这一项目来达到综合运用数据库的训练目的。因为这个系统比较复杂,所以我们通过设计和实现一个简化的“招生录取系统”来模拟招生录取的过程。 系统首先要建立合理的数据结构和关系,并输入必要的基本数据,然后根据院校的招生要求和学生填报的志愿,实现对符合要求的考生的录取。通过对这一过程的模拟,我们可以比较全面地应用前面所学的知识和技能,并提高使用数据库技术解决实际问题的能力。
    2021-05-06下载
    积分:1
  • OpenLayers教
    【实例简介】OpenLayers教程,很好,很专业,包含矢量图层的创建,矢量元素的创建、选中、拖移OpenLayers教程,很好,很专业,包含矢量图层的创建,矢量元素的创建、选中、拖移OpenLayers教程,很好,很专业,包含矢量图层的创建,矢量元素的创建、选中、拖移OpenLayers教程,很好,很专业,包含矢量图层的创建,矢量元素的创建、选中、拖移
    2021-11-18 00:38:02下载
    积分:1
  • 基于FPGA的AD9910的驱动序.rar
    【实例简介】基于FPGA的AD9910驱动程序,采用Verilog语言编写,简明清晰,源代码共享,代码风格明朗,很容易理解。
    2021-11-25 00:42:23下载
    积分:1
  • 跳频信号时频分析源代码
    利用matlab编写的跳频信号时频分析源代码,很详细
    2020-07-03下载
    积分:1
  • 基于STM32的平衡车项目源码
    这是我以前在培训STM32嵌入式开发时的一个小项目,一个基于STM32F103C8T6单片机的平衡车相关资料,内含平衡车原理介绍和PID控制的介绍,平衡车结构等,当然最重要的源码还在,是基于库函数版的,代码附有详细注释。可惜有些资料找不到了,希望剩下的这些资料能对你的学习有帮助。同时也希望你支持一下我,谢谢啦。
    2020-12-12下载
    积分:1
  • sigma-delta 入门推导
    讲述了sigma-delta调制器基本单元的原理,并进行了简单推导;
    2020-12-02下载
    积分:1
  • Key Technologies for 5G Wireless Systems
    5G无线通信系统关键技术(剑桥大学出版社) 2017年出版 对于5G所有最新技术进行了详细说明 很全的工具书Key Technologies for5G Wireless SystemsVINCENT W. S, WONGUniversity of British ColumbiaROBERT SCHOBERUniversity of Erlangen-NurembergDERRICK WING KWAN NGUniversity of New South WalesLI-CHUN WANGNational Chiao-Tung University即CAMBRIDGEUNIVERSITY PRESSCAMBRIDGEUNIVERSITY PRESSUniversity Printing House. Cambridge CB2 SBS. United KindomOne Liberty Plaza, 20h Floor New York, NY I(H0X, USA477 williamstown Road, port Melbourne, yic 3207 australia48424, 2nd Floor, Ansar Rod, Daryaganj. Delhi- I l4XH2, India79 Anson Road, #o6-(/ 00, Singapore 079%MCambridge University Press is part of the Lniversity of CambridgeIt furthers the University s mission by disseminating knowledge in the pursuit ofeducation, leaming and research at the highest international levels of excellence.www.cermbrid吧eInformtiononthistitlewww.cambridgeorg/978110713241810,1017③781316771655C Cambridge University Press 2017This puhlication is in copyright. Subjcct to sututonry exceptionand to the provisions of relewant collective licensing agreementsno reproduction of any part may take place without the writtenpermission of Cutmbridgre University Press.First published 2(117Printed in the United Kingdom by TJ International Ltd. Padstow, CornwallA catalogue recor for this pudlieafiove is aailable fromm the British LibraryLibrary of Congress Cataloging- in Pi hlicaiomz dataNames: Wong, Vincent W.S., editorTitle: Key technologies for 5G wireless systems/edited by Vincent W.S. Wong [and 3 otherOther titles key technologies for five g wireless svstemsDescription: Carmbrisige: New York, NY: Cambridge Lniversity Press, 2017.Identifiers: l CCN 2016045220)1 ISBN 9781 172418 (hardback)Subjects: LCSH: Wireless communication systems, I Machine-to-machinecommunications. Internet of things.Classitication: LCC TKs1032K49 2(17 DDC 621.38450-dc23LcrecordavailaBleathttps://lccnioc-gov/2016m5220)ISBN 978-1-107-17241- HardbackCambridge University Press has no responsibility for the persistence or accuracy ofURLs for extermal or third-party Internet websites referred to in this puhlication,and does not guarantee that any content on such websites is, or will remainaccurate of appropriateContentsList of Contributorspage xvIPrefaceKXIOverview of New Technolog ies for 5G SystemsVincent W S, Wong, Robert Schober, Derrick Wing Kwan Ng, and Li-Chun Wang1.1 Introduction1.2 Cloud Radio Access Networks1.3 Cloud Computing and Fog Computing1. 4 Non-orthogonal Multiple Access1. 5 Flexible Physical Layer Design334.4671. 6 Massive MIMo1. 7 Full-Duplex Communications1. 8 Millimeter wave1.9 Mobile Data Offloading, LTE-Unlicensed, and Smart Data Pricing131. 10 IoT M2M. and D2D1. I1 Radio Resource Management, Interference Mitigation, and Caching61. 12 Energy Harvesting Communications1. 13 Visible Light Communication19Acknowledgments20ReferencesPart I Communication Network Architectures for 5G Systems25Cloud Radio Access Networks for 5G Systems27Chih-Lin I, Jinn Huang, Xueyan Husang, Rongwved Ren, and Yami. Chen2.1 Rethinking the Fundamentals for 5G Systems272 User- Centric Networks2923 C-RAN Basics292.3.1 C-RAN Challenges Toward SGI302.4 Next Generation Fronthaul Interface (NGFI: The FH Solutionfor SGC-RAN312. 4.1 Proof-of-Concept Development of NGFI33Contents2.5 Proof-of-Concept Verification of Virtualized C-RAN2.5.1 Data packets3725.2 Test Procedure382.5.3 Test Results392. 6 Rethinking the Protocol Stack for C-RAN2.6.1 Motivation402.6.2 Multilevel Centralized and Distributed Protocol Stack402.7 Conclusion45AcknowledgmentsReferencesFronthaul-Aware Design for Cloud Radio Access Networks48Liang Liu, Wei Yu, and Osvaldo Simeone3. 1 Introduction483.2 Fronthaul-Aware Cooperative Transmission and Reception493. 2.1 Uplink513.2.2 Downlink573.3 Fronthaul-Aware Data Link and Physical layers61.3. I Uplink633.3.2 Downlink693.4 Conclusion73Acknowledgments74References74MobEdge computing76Ben Liang4.1 Introduction764.2 Mobile Edge Computing774.3 Reference architecture794.4 Benefits and Application Scenarios804 4.1 User-Oriented Use cases4. 4.2 Operator-Oriented Use Ca814 5 Research challenges824.5.1 Computation Offloading824.5.2 Communication Access to Computational Resources834.5.3 Multi-resource Schedulin844.5 4 Mobility Management854.5.5 Resource Allocation and Pricing4.5.6 Network functions virtualization864.5, 7 Security and Pri864.5.8 Integration with Emerging Technologies874.6 Conclusion88ReferencesContentsDecentralized Radio Resource Management for Dense HeterogeneousWireless networksAbolfazl Mehhodniya and Fumiyuki Adach5.1 Introduction925.2 System Model935.2.1 SINR Expression5.2.2 Load and Cost Function Expressions955.3 Joint BSCSA/UECSA ON/OFF Switching Scheme965.3.1 StrateTy Selection and Beacon Transmission53.2 UE AssocIation5.3.3 Proposed Channel Segregation Algorithms985.3.4 Mixed-Strategy Update3.4 Computer Simulation5.5 Conclusion104Acknowledgments04References105Part ll Physical Layer Communication Techniques107Non-Orthogonal Multiple Access(NOMA)for 5G Systems109Wei Llang, Zhiguo Ding, and H. Vincent Poor6.1 Introduction1106.2 NOMA in Single-Input Single-Output(SISO)Systems1126.2.1 The basics of nomaI126. 2. 2 Impact of User Pairing on NOMA136.2,3 Cognitive Radio Inspired NOMA6. 3 NOMA in MIMO Systems1206.3.1 System Model for MIMO-NOMA Schemes1216.3.2 Design of Precoding and Detection Matrices with Limited CSIT 1236.3.3 Design of Precoding and Detection Matrices with Perfect CSIT 1266.4 Summary and Future Directions128ReferencesFlexible Physical Layer Design133Maximilian Matthe, Martin Danneberg, Dan Zhang, and Gerhard Fettweis7.1 Introduction1337. 2 Generalized Frequency Division Multiplexing357.3 Software-Defined waveform1377. 3. 1 Time Domain Processing1387.3.2 Implementation Architecture1387.4 GFDM Receiver Design14174 Synchronization unit1427. 4.2 Channel Estimation Unit1474.3 MIMo-GFDM Detection Unit145Contents7.5 Summary and Outlook147Acknowledgments148References488Distributed Massive MIMO in Cellular Networks15IMichail Matthaiou and Shi Jin8. I Introduction15l8. 2 Massive MIMO: Basic Principles1528.2.1 Uplink Downlink Channel Models1538.2.2Favorable Propagation1548.3 Performance of Linear Receivers in a Massive MIMO Uplink1548.4 performance of linear precoders in a massive mimo downlink1578. s Channel estimation in massive mimo systems1588.5.1 Uplink Transmission1598.5.2 Downlink Transmission1608.6 Applications of Massive MIMO Technology1618.6.1 Full-Duplex Relaying with Massive Antenna Arrays1618.6.2 Joint Wireless Information Transfer and Energy Transfer forDistributed massive mimo1638.7 Open Future Research Directions1678. 8 Conclusionl68References169Full-Duplex Protocol Design for 5G Networks172Tanelf Ahonen and Risto wichman9.1 Introduction1729. 2 Basics of Full-Duplex Systems1739.2.1 In-Band Full-Duplex Operation Mode1739.2.2 Self-Interference and Co-channel Interference1749.2.3 Full-Duplex Transceivers in Communication Links1759. 2. 4 Other Applications of Full-Duplex Transceivers1789.3 Design of Full-Duplex Protocols1799.3, 1 Challenges and Opportunities in Full-Duplex Operation1799.3.2 Full-Duplex Communication Scenarios in 5G NetworksR9.4 Analysis of Full-Duplex Protocols1829.4.1 Operation Modes in Wideband Fading Channels1829. 4, 2 Full- Duplex Versus Half-Duplex in Wideband Transmission1849.5 Conclusion1849.5.1 Prospective Scientific Research DirectionsI849.5.2 Full-Duplex in Commercial 5G Networks185RLItrtncekl8610Millimeter Wave Communications for 5G Networks188Jiho Song, Miguel R Castellanos, and David J. LoweContentsⅸx10.1 Motivations and Opportunities18810.2 Millimeter Wave Radio Propagation18910. 2.1 Radio Attenuation1890. 2. 2. Free-Space Path LOSs19I10.2.3 Severe shadow19310.2 4 Millimeter Wave Channel model19310.2.5 Link Budget Analysis19410.3 Beamforming Architectures19510.3, Analog beamforming solutions19610.3.2 Hybrid Beamforming Solutions20010.3.3 Low-Resolution Receiver Architecture2010.4 Channel Acquisition Techniques20110.4.1 Subspace Sampling for Beam Alignment20210.4.2 Compressed Channel estimation Techniques20510.5 Deployment Challenges and Applications20710.5.1 EM Exposure at Millimeter Wave Frequencies20710.5.2 Heterogeneous and Small-Cell Networks208Acknowledgments209References209Interference Mitigation Techniques for Wireless Networks214Koralia N Pappi and George K, Karag annidis1 1.1 Introduction21411.2 The Interference Management Challenge in the 5G vision21411. 2. 1 The 5G Primary Goals and Their Impact on Interference2141 1.2.2 Enabling Technologies for Improving Network Efficiencyand Mitigating Interference21611.3 Improving the Cell-Edge User Experience: Coordinated Multipoint218I 1.3.1 Deployment Scenarios and Network Architecture2181 13. 2 CoMP Techniques for the Uplink22011.3.3 CoMP Techniques for the Downlink2211 1.4 Interference Alignment: Exploiting Signal Space Dimensions2231 1.4.1 The Concept of Linear Interference Alignment224L1. 4.2 The Example of the X-Channel225I 1. 4.3 The K-User Interference Channel and Cellular NetworksAsymptotic Interference Alignment22611.4.4 Cooperative Interferenee Networks22711.4.5 Insight from IA into the Capacity Limits of Wireless Networks 22711.5 Compute-and-Forward Protocol: Cooperation at the ReceiverSide for the Uplink22811.5.1 Encoding and Decoding of the CoF Protocol22811.5.2 Achievable-Rate Region and Integer Equation Selection23011.5.3 Advantages and Challenges of the CoF Protocol232IL6 Conclusion233References233
    2020-12-06下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载