登录
首页 » Python » 完成版LaneNet

完成版LaneNet

于 2020-10-28 发布
0 165
下载积分: 1 下载次数: 2

代码说明:

说明:  基于SegNet实现了车道线的识别。里面包含已经训练好的模型。(Lane line recognition based on SegNet contains the trained model.)

文件列表:

data, 0 , 2018-12-30
data\source_image, 0 , 2018-12-30
data\source_image\accuracy.png, 48361 , 2018-12-13
data\source_image\binary_seg_loss.png, 47406 , 2018-12-13
data\source_image\instance_seg_loss.png, 45704 , 2018-12-13
data\source_image\lanenet_batch_test.gif, 40673826 , 2018-12-13
data\source_image\lanenet_binary_seg.png, 51954 , 2018-12-13
data\source_image\lanenet_embedding.png, 643503 , 2018-12-13
data\source_image\lanenet_instance_seg.png, 37788 , 2018-12-13
data\source_image\lanenet_mask_result.png, 1007811 , 2018-12-13
data\source_image\network_architecture.png, 178176 , 2018-12-13
data\source_image\total_loss.png, 43865 , 2018-12-13
data\training_data_example, 0 , 2018-12-30
data\training_data_example\gt_image_binary, 0 , 2018-12-30
data\training_data_example\gt_image_binary\0000.png, 6807 , 2018-12-13
data\training_data_example\gt_image_binary\0001.png, 6849 , 2018-12-13
data\training_data_example\gt_image_binary\0002.png, 7700 , 2018-12-13
data\training_data_example\gt_image_binary\0003.png, 7293 , 2018-12-13
data\training_data_example\gt_image_binary\0004.png, 6584 , 2018-12-13
data\training_data_example\gt_image_binary\0005.png, 6632 , 2018-12-13
data\training_data_example\gt_image_instance, 0 , 2018-12-30
data\training_data_example\gt_image_instance\0000.png, 7598 , 2018-12-13
data\training_data_example\gt_image_instance\0001.png, 7652 , 2018-12-13
data\training_data_example\gt_image_instance\0002.png, 8654 , 2018-12-13
data\training_data_example\gt_image_instance\0003.png, 8226 , 2018-12-13
data\training_data_example\gt_image_instance\0004.png, 7313 , 2018-12-13
data\training_data_example\gt_image_instance\0005.png, 7370 , 2018-12-13
data\training_data_example\image, 0 , 2018-12-30
data\training_data_example\image\0000.png, 1113990 , 2018-12-13
data\training_data_example\image\0001.png, 1135520 , 2018-12-13
data\training_data_example\image\0002.png, 1210780 , 2018-12-13
data\training_data_example\image\0003.png, 1192757 , 2018-12-13
data\training_data_example\image\0004.png, 1166130 , 2018-12-13
data\training_data_example\image\0005.png, 1085884 , 2018-12-13
data\training_data_example\train.txt, 988 , 2018-12-13
data\training_data_example\val.txt, 493 , 2018-12-13
data\tusimple_test_image, 0 , 2018-12-30
data\tusimple_test_image\0.jpg, 183035 , 2018-12-13
data\tusimple_test_image\1.jpg, 213446 , 2018-12-13
data\tusimple_test_image\2.jpg, 189109 , 2018-12-13
data\tusimple_test_image\3.jpg, 221499 , 2018-12-13
data\tusimple_test_image\4.jpg, 211132 , 2018-12-13
data\tusimple_test_image\ret, 0 , 2018-12-30
data\tusimple_test_image\ret\0.jpg, 204076 , 2018-12-29
data\tusimple_test_image\ret\1.jpg, 226300 , 2018-12-29
data\tusimple_test_image\ret\2.jpg, 205588 , 2018-12-29
data\tusimple_test_image\ret\3.jpg, 234343 , 2018-12-29
data\tusimple_test_image\ret\4.jpg, 222604 , 2018-12-29
tools, 0 , 2019-03-30
tools\__pycache__, 0 , 2018-12-30
tools\__pycache__\cnn_basenet.cpython-35.pyc, 14265 , 2018-12-29
tools\__pycache__\dense_encoder.cpython-35.pyc, 6066 , 2018-12-29
tools\__pycache__\fcn_decoder.cpython-35.pyc, 2872 , 2018-12-29
tools\__pycache__\global_config.cpython-35.pyc, 879 , 2018-12-29
tools\__pycache__\lanenet_cluster.cpython-35.pyc, 6235 , 2018-12-29
tools\__pycache__\lanenet_discriminative_loss.cpython-35.pyc, 3924 , 2018-12-29
tools\__pycache__\lanenet_merge_model.cpython-35.pyc, 4976 , 2018-12-29
tools\__pycache__\lanenet_postprocess.cpython-35.pyc, 2620 , 2018-12-29
tools\__pycache__\vgg_encoder.cpython-35.pyc, 4484 , 2018-12-29
tools\cnn_basenet.py, 16846 , 2018-12-13
tools\dense_encoder.py, 7947 , 2018-12-29
tools\fcn_decoder.py, 3425 , 2018-12-29
tools\generate_tusimple_dataset.py, 6337 , 2018-12-13
tools\global_config.py, 1643 , 2018-12-13
tools\lanenet_cluster.py, 6823 , 2018-12-13
tools\lanenet_discriminative_loss.py, 5494 , 2018-12-13
tools\lanenet_merge_model.py, 7253 , 2018-12-29
tools\lanenet_postprocess.py, 2565 , 2018-12-13
tools\test_lanenet.py, 9905 , 2019-03-30
tools\train_lanenet.py, 14860 , 2018-12-13
tools\vgg_encoder.py, 6720 , 2018-12-29

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 3Dtext
    3Dtext visual basic代码(3Dtext visual basic code)
    2008-04-27 00:45:24下载
    积分:1
  • MotionDetection
    基于背景减除的单目标跟踪方法在Matlab中的实现,包含测试用avi文件(Background subtraction based on a single-target tracking method in Matlab, implementation, including test avi file)
    2009-12-08 12:14:30下载
    积分:1
  • matlab
    用matlab中各种不同方法对模糊图像进行复原,有维纳滤波,盲返卷积,Lucy-richardson方法,规则化复原图像等(Various different methods using matlab fuzzy image restoration, with Wiener filtering, blind convolution back, Lucy-richardson methods, rules-based recovery images, etc.)
    2010-01-10 14:25:53下载
    积分:1
  • 雷达识别外推程序 trec_c
    雷达识别外推程序,可用于多普勒天气雷达等。(Radar identification extrapolation procedure can be used for Doppler weather radar.)
    2009-10-14 16:31:17下载
    积分:1
  • 86346644
    图像的复制剪切粘贴,Visual C++编程技巧精选,很好的参考资料。(Copy cut and paste image, Visual C++ programming skills selected, a good reference.)
    2013-11-17 06:09:48下载
    积分:1
  • LDAface
    LDA实现人脸特征提取和识别,用matlab编写,和结果分析(A matlab code of LDA for face recognition)
    2009-10-26 23:52:30下载
    积分:1
  • haar
    基于拉haar小波的图像增强,与传统直方图均衡化相比较,效果更好。(Pull-based haar wavelet image enhancement, with the traditional histogram equalization compared to better.)
    2020-12-26 02:59:03下载
    积分:1
  • rsiznrm
    二进制粒子群优化算法pso,主程序:swarmpso m 它包括以下子程序: 1  初始化:swarminit m 2  适应值计算函(Binary particle swarm optimization algorithm pso, master program: swarmpso m it includes the following subroutines: 1 initialize the function of the fitness value of the: swarminit m2)
    2021-04-29 14:18:43下载
    积分:1
  • 123
    基于Hough 变换的SAR 图像舰船尾迹检测方法。该文引进了K均值聚类方法,将这些点集归类,归类后的每一类的类心能很好的代表一条尾迹,实验结果表明方法是有效的。(Hough transform based on SAR images of ship wake detection. The introduction of the K-means clustering method to classify these points, is classified in each category after the class on behalf of the heart can be a good wake, experimental results show that the method is effective.)
    2009-05-14 15:50:37下载
    积分:1
  • Motion-BasedForegroundS
    对监控视频中的目标进行识别,提取背景信息(The target in the surveillance video is identified and background information is extracted)
    2017-09-18 11:07:26下载
    积分:1
  • 696518资源总数
  • 104347会员总数
  • 12今日下载