登录
首页 » Python » 完成版LaneNet

完成版LaneNet

于 2020-10-28 发布
0 157
下载积分: 1 下载次数: 2

代码说明:

说明:  基于SegNet实现了车道线的识别。里面包含已经训练好的模型。(Lane line recognition based on SegNet contains the trained model.)

文件列表:

data, 0 , 2018-12-30
data\source_image, 0 , 2018-12-30
data\source_image\accuracy.png, 48361 , 2018-12-13
data\source_image\binary_seg_loss.png, 47406 , 2018-12-13
data\source_image\instance_seg_loss.png, 45704 , 2018-12-13
data\source_image\lanenet_batch_test.gif, 40673826 , 2018-12-13
data\source_image\lanenet_binary_seg.png, 51954 , 2018-12-13
data\source_image\lanenet_embedding.png, 643503 , 2018-12-13
data\source_image\lanenet_instance_seg.png, 37788 , 2018-12-13
data\source_image\lanenet_mask_result.png, 1007811 , 2018-12-13
data\source_image\network_architecture.png, 178176 , 2018-12-13
data\source_image\total_loss.png, 43865 , 2018-12-13
data\training_data_example, 0 , 2018-12-30
data\training_data_example\gt_image_binary, 0 , 2018-12-30
data\training_data_example\gt_image_binary\0000.png, 6807 , 2018-12-13
data\training_data_example\gt_image_binary\0001.png, 6849 , 2018-12-13
data\training_data_example\gt_image_binary\0002.png, 7700 , 2018-12-13
data\training_data_example\gt_image_binary\0003.png, 7293 , 2018-12-13
data\training_data_example\gt_image_binary\0004.png, 6584 , 2018-12-13
data\training_data_example\gt_image_binary\0005.png, 6632 , 2018-12-13
data\training_data_example\gt_image_instance, 0 , 2018-12-30
data\training_data_example\gt_image_instance\0000.png, 7598 , 2018-12-13
data\training_data_example\gt_image_instance\0001.png, 7652 , 2018-12-13
data\training_data_example\gt_image_instance\0002.png, 8654 , 2018-12-13
data\training_data_example\gt_image_instance\0003.png, 8226 , 2018-12-13
data\training_data_example\gt_image_instance\0004.png, 7313 , 2018-12-13
data\training_data_example\gt_image_instance\0005.png, 7370 , 2018-12-13
data\training_data_example\image, 0 , 2018-12-30
data\training_data_example\image\0000.png, 1113990 , 2018-12-13
data\training_data_example\image\0001.png, 1135520 , 2018-12-13
data\training_data_example\image\0002.png, 1210780 , 2018-12-13
data\training_data_example\image\0003.png, 1192757 , 2018-12-13
data\training_data_example\image\0004.png, 1166130 , 2018-12-13
data\training_data_example\image\0005.png, 1085884 , 2018-12-13
data\training_data_example\train.txt, 988 , 2018-12-13
data\training_data_example\val.txt, 493 , 2018-12-13
data\tusimple_test_image, 0 , 2018-12-30
data\tusimple_test_image\0.jpg, 183035 , 2018-12-13
data\tusimple_test_image\1.jpg, 213446 , 2018-12-13
data\tusimple_test_image\2.jpg, 189109 , 2018-12-13
data\tusimple_test_image\3.jpg, 221499 , 2018-12-13
data\tusimple_test_image\4.jpg, 211132 , 2018-12-13
data\tusimple_test_image\ret, 0 , 2018-12-30
data\tusimple_test_image\ret\0.jpg, 204076 , 2018-12-29
data\tusimple_test_image\ret\1.jpg, 226300 , 2018-12-29
data\tusimple_test_image\ret\2.jpg, 205588 , 2018-12-29
data\tusimple_test_image\ret\3.jpg, 234343 , 2018-12-29
data\tusimple_test_image\ret\4.jpg, 222604 , 2018-12-29
tools, 0 , 2019-03-30
tools\__pycache__, 0 , 2018-12-30
tools\__pycache__\cnn_basenet.cpython-35.pyc, 14265 , 2018-12-29
tools\__pycache__\dense_encoder.cpython-35.pyc, 6066 , 2018-12-29
tools\__pycache__\fcn_decoder.cpython-35.pyc, 2872 , 2018-12-29
tools\__pycache__\global_config.cpython-35.pyc, 879 , 2018-12-29
tools\__pycache__\lanenet_cluster.cpython-35.pyc, 6235 , 2018-12-29
tools\__pycache__\lanenet_discriminative_loss.cpython-35.pyc, 3924 , 2018-12-29
tools\__pycache__\lanenet_merge_model.cpython-35.pyc, 4976 , 2018-12-29
tools\__pycache__\lanenet_postprocess.cpython-35.pyc, 2620 , 2018-12-29
tools\__pycache__\vgg_encoder.cpython-35.pyc, 4484 , 2018-12-29
tools\cnn_basenet.py, 16846 , 2018-12-13
tools\dense_encoder.py, 7947 , 2018-12-29
tools\fcn_decoder.py, 3425 , 2018-12-29
tools\generate_tusimple_dataset.py, 6337 , 2018-12-13
tools\global_config.py, 1643 , 2018-12-13
tools\lanenet_cluster.py, 6823 , 2018-12-13
tools\lanenet_discriminative_loss.py, 5494 , 2018-12-13
tools\lanenet_merge_model.py, 7253 , 2018-12-29
tools\lanenet_postprocess.py, 2565 , 2018-12-13
tools\test_lanenet.py, 9905 , 2019-03-30
tools\train_lanenet.py, 14860 , 2018-12-13
tools\vgg_encoder.py, 6720 , 2018-12-29

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • tuxingxue
    这是一本关于图形学实验的指导书里面有对图形学的具体讲解(tuxingxue)
    2009-05-18 00:21:46下载
    积分:1
  • wbalance1
    图象自动白平衡调整的代码 图象自动白平衡调整的代码(Auto White Balance Image code image automatically adjust white balance adjust code)
    2008-05-22 13:31:29下载
    积分:1
  • Learning-openCV-(Chinese-version)
    openCV中文版 附目录 本书主要介绍: 1.透彻介绍OpenCV 2.从摄像机获取输入 3.图像的变换 4.图像的分割和形状的匹配 5.模式识别,包括人脸检测 6.二维和三维场景中的跟踪监测 7.根据立体视觉进行三维重构 8.机器学习算法(the openCV Chinese edition with catalog book describes: a thorough introduction to OpenCV get input from the camera image transform image segmentation and shape matching 5 pattern recognition, including face detection of two-dimensional and three-dimensional tracking and monitoring of the scene based on stereo vision for three-dimensional reconstruction of 8. machine learning algorithm)
    2013-04-09 19:15:09下载
    积分:1
  • 000siftDemo
    双目视觉 图像匹配 sift特征提取与匹配 极线校正(Binocular vision image matching sift feature extraction and matching polar line correction)
    2018-04-12 08:56:10下载
    积分:1
  • 测试
    图像加密后期测试的程序,用来评价加密图像的质量好坏,可用于图像加密方面(mage encryption late test procedures, used to evaluate the quality of encrypted images, can be used for image encryption)
    2021-04-28 16:58:44下载
    积分:1
  • 937779
    在网上看到的一个在线SVR(支持向量机回归)的C++代码,希望对大家有帮助()
    2020-09-22 22:17:50下载
    积分:1
  • iwssim_iwpsnr
    说明:  图像质量评价中全参考方法IWSSIM的代码,是经典方法SSIM的升级(The code of IWSSIM, a full reference method in image quality evaluation, is an upgrade of SSIM, a classical method)
    2020-06-18 02:40:02下载
    积分:1
  • 处理
    VC图象处理电子书,Chm格式,基本与位图相关的都作了说明,很不错(VC image processing e-books, Chm format, and basic bitmap were made related to the note, a very good)
    2005-03-23 09:44:48下载
    积分:1
  • SVDD_matlab
    SVDD classifier 即支持向量数据描述分类器,能将数据分为两类。本文件也提供了训练数据和测试数据,方便进行测试。(Support vector data description classifier. Data can be divided into two categories .This document also provides training data and test data to make it easy to test the program.)
    2017-06-23 12:02:08下载
    积分:1
  • yansejulei
    图像颜色聚类分割,实现了图形分割,基于RGB特征并显示出来。(Color image segmentation clustering, to achieve the graphics division, based on the characteristics of RGB and displayed.)
    2009-07-05 16:42:08下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载