登录
首页 » Python » MeshCNN-master

MeshCNN-master

于 2020-10-07 发布
0 207
下载积分: 1 下载次数: 1

代码说明:

说明:  三维mesh分割,用于解决分割问题,MeshCNN: A Network with an Edge(3D mesh segmentation)

文件列表:

MeshCNN-master, 0 , 2020-03-09
MeshCNN-master\.gitignore, 65 , 2020-03-09
MeshCNN-master\.travis.yml, 643 , 2020-03-09
MeshCNN-master\LICENSE, 1069 , 2020-03-09
MeshCNN-master\README.md, 3656 , 2020-03-09
MeshCNN-master\data, 0 , 2020-03-09
MeshCNN-master\data\__init__.py, 1113 , 2020-03-09
MeshCNN-master\data\base_dataset.py, 2251 , 2020-03-09
MeshCNN-master\data\classification_data.py, 2338 , 2020-03-09
MeshCNN-master\data\segmentation_data.py, 3331 , 2020-03-09
MeshCNN-master\docs, 0 , 2020-03-09
MeshCNN-master\docs\imgs, 0 , 2020-03-09
MeshCNN-master\docs\imgs\T18.png, 258821 , 2020-03-09
MeshCNN-master\docs\imgs\T252.png, 175222 , 2020-03-09
MeshCNN-master\docs\imgs\T76.png, 311291 , 2020-03-09
MeshCNN-master\docs\imgs\alien.gif, 830076 , 2020-03-09
MeshCNN-master\docs\imgs\coseg_alien.png, 190558 , 2020-03-09
MeshCNN-master\docs\imgs\coseg_chair.png, 349189 , 2020-03-09
MeshCNN-master\docs\imgs\coseg_vase.png, 253075 , 2020-03-09
MeshCNN-master\docs\imgs\cubes.png, 126036 , 2020-03-09
MeshCNN-master\docs\imgs\cubes2.png, 113965 , 2020-03-09
MeshCNN-master\docs\imgs\input_edge_features.png, 18900 , 2020-03-09
MeshCNN-master\docs\imgs\mesh_conv.png, 16958 , 2020-03-09
MeshCNN-master\docs\imgs\mesh_pool_unpool.png, 55354 , 2020-03-09
MeshCNN-master\docs\imgs\meshcnn_overview.png, 480067 , 2020-03-09
MeshCNN-master\docs\imgs\shrec16_train.png, 31439 , 2020-03-09
MeshCNN-master\docs\imgs\shrec__10_0.png, 150036 , 2020-03-09
MeshCNN-master\docs\imgs\shrec__14_0.png, 168645 , 2020-03-09
MeshCNN-master\docs\imgs\shrec__2_0.png, 152258 , 2020-03-09
MeshCNN-master\docs\index.html, 9120 , 2020-03-09
MeshCNN-master\docs\mainpage.css, 944 , 2020-03-09
MeshCNN-master\environment.yml, 244 , 2020-03-09
MeshCNN-master\models, 0 , 2020-03-09
MeshCNN-master\models\__init__.py, 149 , 2020-03-09
MeshCNN-master\models\layers, 0 , 2020-03-09
MeshCNN-master\models\layers\__init__.py, 0 , 2020-03-09
MeshCNN-master\models\layers\mesh.py, 8596 , 2020-03-09
MeshCNN-master\models\layers\mesh_conv.py, 3344 , 2020-03-09
MeshCNN-master\models\layers\mesh_pool.py, 8978 , 2020-03-09
MeshCNN-master\models\layers\mesh_prepare.py, 17520 , 2020-03-09
MeshCNN-master\models\layers\mesh_union.py, 1522 , 2020-03-09
MeshCNN-master\models\layers\mesh_unpool.py, 1572 , 2020-03-09
MeshCNN-master\models\mesh_classifier.py, 4744 , 2020-03-09
MeshCNN-master\models\networks.py, 14583 , 2020-03-09
MeshCNN-master\options, 0 , 2020-03-09
MeshCNN-master\options\__init__.py, 0 , 2020-03-09
MeshCNN-master\options\base_options.py, 4686 , 2020-03-09
MeshCNN-master\options\test_options.py, 635 , 2020-03-09
MeshCNN-master\options\train_options.py, 2701 , 2020-03-09
MeshCNN-master\scripts, 0 , 2020-03-09
MeshCNN-master\scripts\coseg_seg, 0 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\get_data.sh, 272 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\get_pretrained.sh, 324 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\test.sh, 309 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\train.sh, 551 , 2020-03-09
MeshCNN-master\scripts\coseg_seg\view.sh, 191 , 2020-03-09
MeshCNN-master\scripts\cubes, 0 , 2020-03-09
MeshCNN-master\scripts\cubes\get_data.sh, 278 , 2020-03-09
MeshCNN-master\scripts\cubes\get_pretrained.sh, 292 , 2020-03-09
MeshCNN-master\scripts\cubes\test.sh, 225 , 2020-03-09
MeshCNN-master\scripts\cubes\train.sh, 238 , 2020-03-09
MeshCNN-master\scripts\cubes\view.sh, 235 , 2020-03-09
MeshCNN-master\scripts\dataprep, 0 , 2020-03-09
MeshCNN-master\scripts\dataprep\blender_process.py, 3290 , 2020-03-09
MeshCNN-master\scripts\human_seg, 0 , 2020-03-09
MeshCNN-master\scripts\human_seg\get_data.sh, 295 , 2020-03-09
MeshCNN-master\scripts\human_seg\get_pretrained.sh, 286 , 2020-03-09
MeshCNN-master\scripts\human_seg\test.sh, 303 , 2020-03-09
MeshCNN-master\scripts\human_seg\train.sh, 310 , 2020-03-09
MeshCNN-master\scripts\human_seg\view.sh, 104 , 2020-03-09
MeshCNN-master\scripts\shrec, 0 , 2020-03-09
MeshCNN-master\scripts\shrec\get_data.sh, 292 , 2020-03-09
MeshCNN-master\scripts\shrec\get_pretrained.sh, 277 , 2020-03-09
MeshCNN-master\scripts\shrec\test.sh, 230 , 2020-03-09
MeshCNN-master\scripts\shrec\train.sh, 263 , 2020-03-09
MeshCNN-master\scripts\shrec\view.sh, 174 , 2020-03-09
MeshCNN-master\scripts\test_general.py, 2390 , 2020-03-09
MeshCNN-master\test.py, 656 , 2020-03-09
MeshCNN-master\train.py, 2145 , 2020-03-09
MeshCNN-master\util, 0 , 2020-03-09
MeshCNN-master\util\__init__.py, 0 , 2020-03-09
MeshCNN-master\util\mesh_viewer.py, 5031 , 2020-03-09
MeshCNN-master\util\util.py, 2030 , 2020-03-09
MeshCNN-master\util\writer.py, 2948 , 2020-03-09

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PB反编译工具
    说明:  PB反编译工具,支持源码查看和导出undw可以导出数据窗口。(PB decompiler tool, support source code view and export undw can export data window.)
    2020-06-19 21:00:01下载
    积分:1
  • 260_260
    回归用的系统语句语言,可用于多元线性中的阶层回归或逐步帝景回归,控制变量等皆已设置(for regression lkjdfjaslkfklasdjfl;kj;adsf)
    2018-02-09 11:43:47下载
    积分:1
  • 用C语言写的多段图算法的实现,多段图是动态规划的一个典型的实例....
    用C语言写的多段图算法的实现,多段图是动态规划的一个典型的实例.-C language in many of the map algorithm to achieve more of the map is a dynamic planning a typical example.
    2022-04-20 19:39:36下载
    积分:1
  • MRCRGGA
    云调度,启发式规则,组合优化,遗传算法,从理论上来说,做分布式系统并非企图加快单一任务处理速度,而是通过并行的方式合理利用资源,通过加大对任务的同时批量处理业务容量来加快业务的运营速度。(Cloud scheduling, heuristic rules, combinatorial optimization, genetic algorithms)
    2020-06-23 21:40:02下载
    积分:1
  • single
    single-server queueing system
    2022-03-18 17:23:05下载
    积分:1
  • 45666022SAR_KPCA
    雷达识别程序,可用于多普勒雷达,雷达信号的特征提取(Radar recognition program, which can be used in Doppler radar)
    2019-04-25 22:36:45下载
    积分:1
  • ectouch微信支付,带微信H5支付
    ectouch,ecshop微信H5支付插件,测试完美可用。(Ectouch, ECSHOP WeChat H5 payment plugin, test perfect.)
    2018-10-26 20:20:46下载
    积分:1
  • SD Simplified_Specification_Ver3.00
    说明:  SD3.0 协议,协议说明书,通信原理,SD 协议simple(PartA2_SD Host_Controller_Simplified_Specification_Ver3.00)
    2020-06-17 09:40:01下载
    积分:1
  • CRLB
    求取TDOA,TOA定位算法的克拉美罗界(description of CLRB for TDOA and TOA)
    2021-03-22 16:29:16下载
    积分:1
  • 作业6
    说明:  主成分分析方法PCA与灰度共生矩阵GLCM 主成分分析方法是一种使用最广泛的数据降维算法。 灰度共生矩阵是一种描述图像局部区域或整体区域的某像素与相邻像素或一定距离内的像素的灰度关系的矩阵。即求灰度图像中某种形状的像素对,在全图中出现的次数。(PCA and Gray Co-occurrence Matrix GLCM The principal component analysis method is one of the most widely used data reduction algorithms. The gray level co-occurrence matrix is a matrix describing the gray level relationship between a pixel in a local area or an entire area of an image and neighboring pixels or pixels within a certain distance. That is to find the number of times a pixel pair of a certain shape appears in the whole image in a grayscale image.)
    2019-11-26 16:37:58下载
    积分:1
  • 696518资源总数
  • 106253会员总数
  • 14今日下载