登录
首页 » Mathematica » EWT20191213

EWT20191213

于 2020-08-25 发布
0 196
下载积分: 1 下载次数: 4

代码说明:

说明:  信号处理 是经验小波分解, 能够有效的分解信号,提取故障特征(Signal processing is empirical wavelet decomposition, which can effectively decompose signals and extract fault features)

文件列表:

EWT\1D\EWT1D.m, 3238 , 2019-12-13
EWT\1D\EWT_IFcleaning.m, 1773 , 2019-12-13
EWT\1D\EWT_InstantaneousComponents.m, 1734 , 2019-12-13
EWT\1D\EWT_LP_FilterBank.m, 2789 , 2019-12-13
EWT\1D\EWT_LP_Scaling.m, 953 , 2019-12-13
EWT\1D\EWT_LP_Scaling_cpx.m, 1382 , 2019-12-13
EWT\1D\EWT_LP_Wavelet.m, 1489 , 2019-12-13
EWT\1D\EWT_LP_Wavelet_cpx_HFlow.m, 1067 , 2019-12-13
EWT\1D\EWT_LP_Wavelet_cpx_HFup.m, 1097 , 2019-12-13
EWT\1D\EWT_LP_Wavelet_last.m, 1005 , 2019-12-13
EWT\1D\EWT_Modes_EWT1D.m, 641 , 2019-12-13
EWT\1D\EWT_beta.m, 162 , 2019-12-13
EWT\1D\iEWT1D.m, 882 , 2019-12-13
EWT\2D\Curvelet\EWT2D_Curvelet.m, 8369 , 2019-12-13
EWT\2D\Curvelet\EWT2D_Curvelet_FilterBank.m, 10539 , 2019-12-13
EWT\2D\Curvelet\EWT2D_Curvelet_Scaling.m, 971 , 2019-12-13
EWT\2D\Curvelet\EWT2D_Symmterize_Curvelet_Filter.m, 557 , 2019-12-13
EWT\2D\Curvelet\EWT_AnglesLocalMax.m, 1450 , 2019-12-13
EWT\2D\Curvelet\EWT_AnglesLocalMaxMin.m, 2190 , 2019-12-13
EWT\2D\Curvelet\EWT_Angles_Detect.m, 2694 , 2019-12-13
EWT\2D\Curvelet\EWT_Angular_sector.m, 4899 , 2019-12-13
EWT\2D\Curvelet\EWT_CreateAngleGrid.m, 1325 , 2019-12-13
EWT\2D\Curvelet\iEWT2D_Curvelet.m, 850 , 2019-12-13
EWT\2D\Littlewood-Paley\EWT2D_LP_FilterBank.m, 1532 , 2019-12-13
EWT\2D\Littlewood-Paley\EWT2D_LP_Scaling.m, 1011 , 2019-12-13
EWT\2D\Littlewood-Paley\EWT2D_LP_Wavelet.m, 1242 , 2019-12-13
EWT\2D\Littlewood-Paley\EWT2D_LittlewoodPaley.m, 2824 , 2019-12-13
EWT\2D\Littlewood-Paley\EWT2D_UP_LP_Wavelet.m, 1095 , 2019-12-13
EWT\2D\Littlewood-Paley\iEWT2D_LittlewoodPaley.m, 799 , 2019-12-13
EWT\2D\Ridgelet\EWT2D_Ridgelet.m, 2886 , 2019-12-13
EWT\2D\Ridgelet\iEWT2D_Ridgelet.m, 1007 , 2019-12-13
EWT\2D\Tensor\EWT2D_Tensor.m, 3406 , 2019-12-13
EWT\2D\Tensor\iEWT2D_Tensor.m, 1300 , 2019-12-13
EWT\Boundaries\EWT_Adaptive_Bounds_Adapt.m, 1634 , 2019-12-13
EWT\Boundaries\EWT_Boundaries_Completion.m, 835 , 2019-12-13
EWT\Boundaries\EWT_Boundaries_Detect.m, 4770 , 2019-12-13
EWT\Boundaries\EWT_RemoveTrend.m, 3869 , 2019-12-13
EWT\Boundaries\EWT_SpectrumRegularize.m, 1436 , 2019-12-13
EWT\Boundaries\EpsNeighLocalMaxMin.m, 2009 , 2019-12-13
EWT\Boundaries\LocalMaxima\EWT_LocalMax.m, 1259 , 2019-12-13
EWT\Boundaries\LocalMaxima\EWT_LocalMaxMin.m, 2146 , 2019-12-13
EWT\Boundaries\LocalMaxima\EWT_LocalMaxMin2.m, 2672 , 2019-12-13
EWT\Boundaries\MorphoMath\EWT_FunctionClosing.m, 662 , 2019-12-13
EWT\Boundaries\MorphoMath\EWT_FunctionDilation.m, 774 , 2019-12-13
EWT\Boundaries\MorphoMath\EWT_FunctionErosion.m, 770 , 2019-12-13
EWT\Boundaries\MorphoMath\EWT_FunctionOpening.m, 661 , 2019-12-13
EWT\Boundaries\PowerLaw\EWT_Powerlaw_Estimator.m, 720 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_EmpiricalLaw.m, 1023 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_GSS_BoundariesDetect.m, 897 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_HalfNormalLaw.m, 1085 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_LengthScaleCurve.m, 3414 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_MeanTh.m, 870 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_MeaningfulScaleSpace.m, 1316 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_OtsuMethod.m, 1222 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_PlanGaussianScaleSpace.m, 1349 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_RemoveMerge.m, 4039 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_kmeansDetect.m, 1211 , 2019-12-13
EWT\Boundaries\ScaleSpace\EWT_maxcheckplateau.m, 411 , 2019-12-13
EWT\Documentation\EWT_Toolbox.pdf, 199914 , 2019-12-13
EWT\README.txt, 6165 , 2019-12-13
EWT\Tests\1D\Disp_HHT.m, 244 , 2019-12-13
EWT\Tests\1D\Heeg.mat, 11442 , 2019-12-13
EWT\Tests\1D\Htexture.mat, 1220 , 2019-12-13
EWT\Tests\1D\Test_Boundaries.m, 2645 , 2019-12-13
EWT\Tests\1D\Test_EWT1D.m, 4356 , 2019-12-13
EWT\Tests\1D\csig1.mat, 30658 , 2019-12-13
EWT\Tests\1D\disp_hhs2.m, 2165 , 2019-12-13
EWT\Tests\1D\eeg.mat, 8648 , 2019-12-13
EWT\Tests\1D\seismic.mat, 52273 , 2019-12-13
EWT\Tests\1D\sig1.mat, 33972 , 2019-12-13
EWT\Tests\1D\sig2.mat, 49617 , 2019-12-13
EWT\Tests\1D\sig3.mat, 47849 , 2019-12-13
EWT\Tests\1D\sig4.mat, 110288 , 2019-12-13
EWT\Tests\1D\texture.mat, 360725 , 2019-12-13
EWT\Tests\2D\Save_EWT2D_Curvelet.m, 938 , 2019-12-13
EWT\Tests\2D\Save_EWT2D_LP.m, 1032 , 2019-12-13
EWT\Tests\2D\Save_EWT2D_Tensor.m, 1062 , 2019-12-13
EWT\Tests\2D\Test_EWT2D_Curvelet.m, 2746 , 2019-12-13
EWT\Tests\2D\Test_EWT2D_LP.m, 1933 , 2019-12-13
EWT\Tests\2D\Test_EWT2D_Ridgelet.m, 1919 , 2019-12-13
EWT\Tests\2D\Test_EWT2D_Tensor.m, 1989 , 2019-12-13
EWT\Tests\2D\barb.mat, 235601 , 2019-12-13
EWT\Tests\2D\lena.mat, 96607 , 2019-12-13
EWT\Tests\2D\texture.mat, 360725 , 2019-12-13
EWT\Utilities\1D\EWT_TF_Plan.m, 3470 , 2019-12-13
EWT\Utilities\1D\Show_EWT.m, 2015 , 2019-12-13
EWT\Utilities\1D\Show_EWT_Boundaries.m, 2457 , 2019-12-13
EWT\Utilities\1D\Show_EWT_Filters.m, 1413 , 2019-12-13
EWT\Utilities\2D\EWT_LP_boundaries.m, 800 , 2019-12-13
EWT\Utilities\2D\EWT_Tensor_Plot_Boundaries.m, 1362 , 2019-12-13
EWT\Utilities\2D\EWT_drawArcEllipse.m, 342 , 2019-12-13
EWT\Utilities\2D\EWT_drawEllipse.m, 186 , 2019-12-13
EWT\Utilities\2D\ShowCurveletFilters.m, 807 , 2019-12-13
EWT\Utilities\2D\Show_Curvelets_boundaries.m, 6285 , 2019-12-13
EWT\Utilities\2D\Show_EWT2D.m, 513 , 2019-12-13
EWT\Utilities\2D\Show_EWT2D_Curvelet.m, 1247 , 2019-12-13
EWT\Utilities\2D\Show_EWT2D_Filters.m, 578 , 2019-12-13
EWT\Utilities\2D\Show_EWT2D_Tensor.m, 951 , 2019-12-13
EWT\Utilities\EWTDefaultParams.m, 1437 , 2019-12-13
license.txt, 1493 , 2019-12-13

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PSMF
    Prograssive Switching Median Filter
    2009-11-05 23:31:59下载
    积分:1
  • D2D-underlay-power-control-
    用matlab对D2D蜂窝网络惊醒仿真。对D2D和蜂窝用户进行功率控制。(Using matlab to D2D cellular network emulation awakened. Cellular subscriber of D2D and power control.)
    2016-05-17 17:13:32下载
    积分:1
  • PCAxmeas_fault1
    说明:  主元分析方法(PCA)是一种基于多元统计分析的数据降维方法, 它利用过程变量间的相关关系, 建立正常工况下的主元模型, 通过检验新的数据样本相对于主元模型的背离程度, 从而发现异常和故障。 (Principal Component Analysis (PCA) is based on multivariate statistical analysis of the data reduction method, which uses the correlation between process variables and establish the normal condition of the main element model, by testing samples of the new data relative to the principal component model departure from, and thus abnormal and failure.)
    2010-04-21 21:57:27下载
    积分:1
  • scfdma-total
    it a matlab scource code to simulate sfdma
    2014-09-09 03:25:25下载
    积分:1
  • symbol-caculation
    matlab符号运算的ppt讲解教程,讲解通俗易懂,易于学习(ppt matlab symbolic computation tutorials explain, easy to understand explanation, easy to learn)
    2013-09-27 14:30:16下载
    积分:1
  • lagrange
    拉格朗日插值代码,非常简洁的代码,适合学生作业及学习,(On Lagrange Interpolation code, the very concise of the code, suitable for students job and learning,)
    2013-04-16 14:24:59下载
    积分:1
  • lsb
    hidinh message with lsb algorithm in matmab m-file
    2010-01-01 19:34:05下载
    积分:1
  • wo_liu
    说明:  涡流计算的流场程序,适合于流场初级者的研究(Vortex flow calculation procedure is suitable for those who study the primary flow field)
    2010-03-30 08:43:42下载
    积分:1
  • MDGmodels
    manuevering vessel models
    2011-10-05 01:51:31下载
    积分:1
  • BASIC5
    Simulink model of flexible flow shop
    2015-01-04 19:26:36下载
    积分:1
  • 696518资源总数
  • 104347会员总数
  • 12今日下载