登录
首页 » matlab » toolbox-master

toolbox-master

于 2018-05-25 发布
0 116
下载积分: 1 下载次数: 3

代码说明:

说明:  该节主要介绍下matlab下的光流法以及一个研究物体检测方面的一个较好的工具箱 :Piotr’s Computer Vision Matlab Toolbox .将这两个工具箱及其里面所有文件的路径都添加到matlab路径中去,这样的话基本上是可以用了。 Piotr’s 的工具箱里面的函数很多,也涉及到了很多方面,更主要的是关于目标检测方面的。(This section mainly introduces the optical flow under Matlab and a better toolkit for researching object detection: Piotr 's Computer Vision Matlab Toolbox. Add the two toolkits and all the files in the path to the MATLAB path, which is basically useful. There are many functions in the toolbox of Piotr 's, and there are many aspects involved)

文件列表:

toolbox-master, 0 , 2018-04-03
toolbox-master\.gitignore, 79 , 2018-04-03
toolbox-master\README.md, 50 , 2018-04-03
toolbox-master\channels, 0 , 2018-04-03
toolbox-master\channels\Contents.m, 1918 , 2018-04-03
toolbox-master\channels\chnsCompute.m, 9239 , 2018-04-03
toolbox-master\channels\chnsPyramid.m, 10523 , 2018-04-03
toolbox-master\channels\chnsScaling.m, 5019 , 2018-04-03
toolbox-master\channels\convBox.m, 3067 , 2018-04-03
toolbox-master\channels\convMax.m, 2318 , 2018-04-03
toolbox-master\channels\convTri.m, 4403 , 2018-04-03
toolbox-master\channels\fhog.m, 2966 , 2018-04-03
toolbox-master\channels\gradient2.m, 1213 , 2018-04-03
toolbox-master\channels\gradientHist.m, 3427 , 2018-04-03
toolbox-master\channels\gradientMag.m, 2340 , 2018-04-03
toolbox-master\channels\hog.m, 3460 , 2018-04-03
toolbox-master\channels\hogDraw.m, 1257 , 2018-04-03
toolbox-master\channels\imPad.m, 2228 , 2018-04-03
toolbox-master\channels\imResample.m, 2324 , 2018-04-03
toolbox-master\channels\private, 0 , 2018-04-03
toolbox-master\channels\private\chnsTestCpp.cpp, 2535 , 2018-04-03
toolbox-master\channels\private\convConst.cpp, 10301 , 2018-04-03
toolbox-master\channels\private\convConst.mexa64, 18665 , 2018-04-03
toolbox-master\channels\private\convConst.mexmaci64, 22124 , 2018-04-03
toolbox-master\channels\private\convConst.mexw64, 29184 , 2018-04-03
toolbox-master\channels\private\gradientMex.cpp, 18892 , 2018-04-03
toolbox-master\channels\private\gradientMex.mexa64, 23054 , 2018-04-03
toolbox-master\channels\private\gradientMex.mexmaci64, 26988 , 2018-04-03
toolbox-master\channels\private\gradientMex.mexw64, 38912 , 2018-04-03
toolbox-master\channels\private\gradientMexNew.mexmaci64, 26988 , 2018-04-03
toolbox-master\channels\private\imPadMex.cpp, 5424 , 2018-04-03
toolbox-master\channels\private\imPadMex.mexa64, 28577 , 2018-04-03
toolbox-master\channels\private\imPadMex.mexmaci64, 34220 , 2018-04-03
toolbox-master\channels\private\imPadMex.mexw64, 40960 , 2018-04-03
toolbox-master\channels\private\imResampleMex.cpp, 7810 , 2018-04-03
toolbox-master\channels\private\imResampleMex.mexa64, 21350 , 2018-04-03
toolbox-master\channels\private\imResampleMex.mexmaci64, 30252 , 2018-04-03
toolbox-master\channels\private\imResampleMex.mexw64, 34304 , 2018-04-03
toolbox-master\channels\private\rgbConvertMex.cpp, 8670 , 2018-04-03
toolbox-master\channels\private\rgbConvertMex.mexa64, 28926 , 2018-04-03
toolbox-master\channels\private\rgbConvertMex.mexmaci64, 47648 , 2018-04-03
toolbox-master\channels\private\rgbConvertMex.mexw64, 44544 , 2018-04-03
toolbox-master\channels\private\sse.hpp, 3125 , 2018-04-03
toolbox-master\channels\private\wrappers.hpp, 1573 , 2018-04-03
toolbox-master\channels\rgbConvert.m, 3630 , 2018-04-03
toolbox-master\classify, 0 , 2018-04-03
toolbox-master\classify\Contents.m, 2387 , 2018-04-03
toolbox-master\classify\adaBoostApply.m, 1230 , 2018-04-03
toolbox-master\classify\adaBoostTrain.m, 5096 , 2018-04-03
toolbox-master\classify\binaryTreeApply.m, 1111 , 2018-04-03
toolbox-master\classify\binaryTreeTrain.m, 5784 , 2018-04-03
toolbox-master\classify\confMatrix.m, 2166 , 2018-04-03
toolbox-master\classify\confMatrixShow.m, 1988 , 2018-04-03
toolbox-master\classify\demoCluster.m, 1522 , 2018-04-03
toolbox-master\classify\demoGenData.m, 3120 , 2018-04-03
toolbox-master\classify\distMatrixShow.m, 2204 , 2018-04-03
toolbox-master\classify\fernsClfApply.m, 936 , 2018-04-03
toolbox-master\classify\fernsClfTrain.m, 3277 , 2018-04-03
toolbox-master\classify\fernsInds.m, 985 , 2018-04-03
toolbox-master\classify\fernsRegApply.m, 1014 , 2018-04-03
toolbox-master\classify\fernsRegTrain.m, 5914 , 2018-04-03
toolbox-master\classify\forestApply.m, 1558 , 2018-04-03
toolbox-master\classify\forestTrain.m, 6138 , 2018-04-03
toolbox-master\classify\kmeans2.m, 5251 , 2018-04-03
toolbox-master\classify\meanShift.m, 3212 , 2018-04-03
toolbox-master\classify\meanShiftIm.m, 4812 , 2018-04-03
toolbox-master\classify\meanShiftImExplore.m, 2409 , 2018-04-03
toolbox-master\classify\pca.m, 3244 , 2018-04-03
toolbox-master\classify\pcaApply.m, 3320 , 2018-04-03
toolbox-master\classify\pcaData.mat, 165368 , 2018-04-03
toolbox-master\classify\pcaRandVec.m, 3140 , 2018-04-03
toolbox-master\classify\pcaVisualize.m, 4096 , 2018-04-03
toolbox-master\classify\pdist2.m, 5162 , 2018-04-03
toolbox-master\classify\private, 0 , 2018-04-03
toolbox-master\classify\private\IDX2order.m, 1038 , 2018-04-03
toolbox-master\classify\private\binaryTreeTrain1.cpp, 2744 , 2018-04-03
toolbox-master\classify\private\binaryTreeTrain1.mexa64, 9606 , 2018-04-03
toolbox-master\classify\private\binaryTreeTrain1.mexmaci64, 13020 , 2018-04-03
toolbox-master\classify\private\binaryTreeTrain1.mexw64, 10752 , 2018-04-03
toolbox-master\classify\private\fernsInds1.c, 1493 , 2018-04-03
toolbox-master\classify\private\fernsInds1.mexa64, 7187 , 2018-04-03
toolbox-master\classify\private\fernsInds1.mexmaci64, 8728 , 2018-04-03
toolbox-master\classify\private\fernsInds1.mexw64, 8192 , 2018-04-03
toolbox-master\classify\private\forestFindThr.cpp, 3717 , 2018-04-03
toolbox-master\classify\private\forestFindThr.mexa64, 10332 , 2018-04-03
toolbox-master\classify\private\forestFindThr.mexmaci64, 13040 , 2018-04-03
toolbox-master\classify\private\forestFindThr.mexw64, 11264 , 2018-04-03
toolbox-master\classify\private\forestInds.cpp, 1986 , 2018-04-03
toolbox-master\classify\private\forestInds.mexa64, 10221 , 2018-04-03
toolbox-master\classify\private\forestInds.mexmaci64, 8800 , 2018-04-03
toolbox-master\classify\private\forestInds.mexw64, 9216 , 2018-04-03
toolbox-master\classify\private\meanShift1.c, 5496 , 2018-04-03
toolbox-master\classify\private\meanShift1.mexa64, 9556 , 2018-04-03
toolbox-master\classify\private\meanShift1.mexmaci64, 13288 , 2018-04-03
toolbox-master\classify\private\meanShift1.mexw64, 10752 , 2018-04-03
toolbox-master\classify\private\meanShiftPost.m, 1374 , 2018-04-03
toolbox-master\classify\rbfComputeBasis.m, 5177 , 2018-04-03
toolbox-master\classify\rbfComputeFtrs.m, 1130 , 2018-04-03
toolbox-master\classify\rbfDemo.m, 2929 , 2018-04-03
toolbox-master\classify\softMin.m, 2317 , 2018-04-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • watershed_example
    说明:  分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征。本示例适用于二维和三维图像,计算分水岭变换并将结果标签矩阵显示为RGB图像。 分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征。本示例适用于二维和三维图像,计算分水岭变换并将结果标签矩阵显示为RGB图像。(The watershed algorithm is an image region segmentation method. In the segmentation process, it will use the similarity with neighboring pixels as an important reference basis, so as to connect pixels that are close in space and have similar gray values to each other. Forming a closed contour, closedness is an important feature of the watershed algorithm. This example applies to 2D and 3D images, calculates the watershed transformation and displays the resulting label matrix as an RGB image.)
    2020-04-08 21:45:20下载
    积分:1
  • RelaxationLabeling
    该算法实现了数字图像中松弛标记算法处理图像。(The relaxation labeling algorithm in digital image processing)
    2020-07-24 23:48:43下载
    积分:1
  • facedetectandrecognition-dlib-python3.6
    说明:  机器学习专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技 能,为包括人脸识别领域的人工智能的发展做出了极大的贡献。本文探索如何应用机器学习中的一些技术,使计算机更好地完成人脸识别领域中的人脸检测和人脸验证。 在人脸检测方面,针对如何快速、准确地检出人脸的问题,基于DLIB中特征模型,可以快速提取检测出人脸,并且提取出人脸特征点,主要作用就是快速检测定位人脸。在训练过程中,引入了ResNet机器学习算法,该算法采用多层卷积神经网络结构,对人脸进行多层特征提取和描述,得到人脸特征描述符。通过测试可以证实了上述方法能够检测和识别人脸。(In terms of face detection, for the problem of how to detect faces quickly and accurately, based on the feature model in DLIB, you can quickly extract and detect faces, and extract face feature points, the main role is to quickly detect and locate faces. In the training process, the VGG-FACE machine learning algorithm is introduced. This algorithm uses a multi-layer convolutional neural network structure to perform multi-layer feature extraction and description on the face to obtain the face feature descriptor. Tests can confirm that the above method can detect and recognize human faces.)
    2020-05-06 14:33:08下载
    积分:1
  • Asm-Toolbox
    这是一个asm主动形状模型的函数箱,里面都是全是源码(This is an active shape model asm function boxes, which are all source)
    2011-04-19 19:28:24下载
    积分:1
  • 34188398matlab2
    说明:  小波去噪的程序,很好用,推荐给大家使用。(Wavelet denoising procedures, very easy to use, recommended for everyone to use)
    2019-03-28 16:04:00下载
    积分:1
  • adaboost
    Adaboost训练分类器的源代码,是快速人脸检测的必备。(It is the code for training classifiers by Adaboost to Face Detection)
    2010-03-10 21:23:11下载
    积分:1
  • threshold
    python语言,三种阈值分割方式,简单阈值分割,自适应阈值分割,OTsu分割方式(Python language, three methods of image segmentation , simple threshold segmentation, adaptive threshold segmentation, OTsu segmentation)
    2019-04-06 16:08:23下载
    积分:1
  • matlab实现三维重建
    一种用三维重建的matlab代码,有实验结果图(A three-dimensional reconstruction of the matlab code, with experimental results)
    2017-07-29 18:21:51下载
    积分:1
  • 像纹理
    实图像的纹理特征提取,提取出的效果比较好,希望能够绑到有用的同学和人员(Real image texture feature extraction, the effect is better, hoping to be tied to useful classmates and personnel.)
    2018-04-14 20:15:04下载
    积分:1
  • PhysRevE.71.037604
    运用本征模式匹配理论研究了声子晶体实际的声学速度沿两个高度对称的方向上的第一布里渊区里的特性。(The effective acoustic velocity along two highly symmetric directions of the first Brillouin zone is studied in a two-dimensional squarely arranged solid-solid phononic crystal.)
    2013-01-15 22:36:38下载
    积分:1
  • 696518资源总数
  • 104228会员总数
  • 45今日下载