登录
首页 » matlab » 核自适应滤波KAF备份

核自适应滤波KAF备份

于 2020-08-07 发布
0 114
下载积分: 1 下载次数: 4

代码说明:

说明:  适用于初学者练习和入门,里面有几种基础算法的源码和练习版本,需要对照书去学习(Suitable for beginners and beginners, there are several basic algorithm source code and exercise version, need to learn the reference book)

文件列表:

核自适应滤波KAF备份\src, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\channelEq\PART1.m, 2526 , 2016-08-08
核自适应滤波KAF备份\src\ch2_codes\channelEq\PART2.m, 3968 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction, 0 , 2020-07-29
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\ker_eval.m, 752 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS1.m, 2143 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS1_LC.m, 2866 , 2009-02-07
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\KLMS3.m, 3327 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\LMS1.m, 1454 , 2020-07-08
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\MK30.mat, 37821 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART1.m, 2449 , 2020-07-29
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART10.m, 4385 , 2009-02-07
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART2.m, 4056 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART3.m, 2750 , 2020-06-09
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART4.m, 4666 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART5.m, 5051 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART6.m, 5173 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART7.m, 5052 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART8.m, 4027 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\PART9.m, 7351 , 2009-05-17
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\regularizationNetwork.m, 1579 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\sparseKLMS1.m, 3907 , 2008-10-19
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\Study1LMS1.m, 585 , 2020-06-05
核自适应滤波KAF备份\src\ch2_codes\mg_prediction\Study2LMS.m, 174 , 2020-06-06
核自适应滤波KAF备份\src\ch2_codes\regularization_function, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch2_codes\regularization_function\regularizationfuntion.m, 2102 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\channelEq\APA1.m, 2160 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\APA1s.m, 1858 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS1.m, 2049 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS1s.m, 1705 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\LMS2.m, 2163 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART1.m, 8351 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART2.m, 9302 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\PART3.m, 5888 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA1.m, 4866 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA1s.m, 4207 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA2.m, 5095 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKAPA2s.m, 4443 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKLMS1.m, 4144 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\channelEq\sparseKLMS1s.m, 3635 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KAPA1.m, 4217 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KAPA2.m, 4454 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KLMS1.m, 2863 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\KRLS.m, 3093 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\LMS1.m, 2049 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\MK30.mat, 37821 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\PART1.m, 6174 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\PART2.m, 7571 , 2009-05-18
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\slidingWindowKRLS.m, 3632 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKAPA1.m, 4626 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKAPA2.m, 4870 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\mg_prediction\sparseKLMS1.m, 3907 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\fmri.mat, 1580350 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\LMS2.m, 2395 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\PART1.m, 5662 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\PART2.m, 4786 , 2009-05-17
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\sparseKAPA2.m, 4393 , 2008-10-19
核自适应滤波KAF备份\src\ch3_codes\noiseCancelation\sparseKLMS1.m, 3517 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\channelEq, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\channelEq\gramMatrix.m, 714 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\ker_eval.m, 689 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\KRLS_ALDs.m, 3705 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART1.asv, 3857 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART1.m, 3834 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART3.asv, 3740 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\PART3.m, 3945 , 2009-08-10
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1.m, 4144 , 2008-10-19
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1s.asv, 3639 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\channelEq\sparseKLMS1s.m, 3693 , 2009-08-08
核自适应滤波KAF备份\src\ch4_codes\gpr, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml, 0 , 2020-06-04
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approxEP.m, 5097 , 2007-07-24
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approximations.m, 1936 , 2007-06-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\approxLA.m, 3094 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryEPGP.m, 2671 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryGP.m, 6941 , 2007-06-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\binaryLaplaceGP.m, 3071 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\Contents.m, 2656 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\Copyright, 776 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covConst.m, 774 , 2007-07-24
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covFunctions.m, 4136 , 2006-05-15
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covLINard.m, 1046 , 2006-03-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covLINone.m, 984 , 2006-03-27
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covMatern3iso.m, 1392 , 2007-06-26
核自适应滤波KAF备份\src\ch4_codes\gpr\gpml-matlab\gpml\covMatern5iso.m, 1417 , 2007-06-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ICAbook
    说明:  此书《独立分量分析的原理与应用》是一本非常好的书,适合通信,声纳,地震等等从事这方面研究的技术人员。(The book, &quot Independent Component Analysis Theory and Application&quot is a very good book, for communications, sonar, seismic research in this area and so the technical staff.)
    2011-03-21 15:59:19下载
    积分:1
  • lfm
    对于给定的雷达信号参数,对线性调频信号时域与频域的波形仿真(Radar signal for a given parameter, the linear frequency modulated signal time-domain and frequency domain waveform simulation)
    2012-06-16 09:12:16下载
    积分:1
  • shiyan3
    曹梦龙 仿真大实验 实验三 包括所有有用数据(Caomeng Long simulation experiment in Experiment 3, all useful data)
    2011-08-25 09:20:07下载
    积分:1
  • M
    图像处理综合实例的SIMULINK实现例程(SIMULINK image processing example implementation routines )
    2013-11-30 10:45:52下载
    积分:1
  • Machinery-Diagnosis
    子波分析是一种日益获得广泛应用的信号处理新技 术, 具有良好的时-频局部化特性, 尤其适用于时变及非平 稳信号。本文简述了子波函数与子波展开的基本概念, 利用 展缩子波和调和子波将信号及信号均方值进行时-频两维 分布。最后采用了三种子波分析方法对轴承故障进行诊断, 即使对现有各种方法尚难以诊断的滚动体故障, 也能获得 满意的结果, 说明子波分析的确为机械故障诊断提供了强 有力的分析手段。(Wavelet a nalysis, as a new technique of signal processing , possesses ex cellent characteristic of time-frequency localization and is suitable for analyzing the time-var ying or transient signals. In this paper , the basic concepts of wavelet function and wavelet expansion are briefly introduced. The time frequency distribution of signal and its energy are obtained by decomposition via dilating wavelet and harmanic wavelet. )
    2012-01-02 03:56:37下载
    积分:1
  • random_networks
    随机网络matlab程序,模拟复杂网络的生成及统计(complex random network)
    2013-01-23 20:47:48下载
    积分:1
  • iso
    关于模式识别中运用到的模糊分类方法及分类器设计,是很好的参考程序。(About ISODATA algorithm Matlab language)
    2013-11-18 22:15:39下载
    积分:1
  • changdu
    利用龙格库塔法解光波导激光器的重叠因子的传输方程,从而得到输出功率(Runge-Kutta method using optical waveguide laser solutions overlap factor of the transfer equation, thus the output power)
    2009-05-25 21:42:12下载
    积分:1
  • fourier
    Matlab script to illustrate the Fourier transform of a periodic signal
    2010-01-08 19:07:14下载
    积分:1
  • Rayleigh Fading Channel Signal Generator Using the
    说明:  一种基于JAKE模型的改进的瑞利衰落信道仿真(A model of the Rayleigh fading channel simulation)
    2005-12-28 19:51:25下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载