登录
首页 » matlab » ruan zhu

ruan zhu

于 2020-07-09 发布
0 137
下载积分: 1 下载次数: 1

代码说明:

说明:  一个用DBN做时间序列预测的实例,内包括了数据(An example of using DBN to predict time series includes data)

文件列表:

ruan zhu\choose.fig, 6677 , 2020-07-03
ruan zhu\choose.m, 3556 , 2020-01-11
ruan zhu\contact.fig, 7981 , 2020-07-03
ruan zhu\contact.m, 3495 , 2020-07-03
ruan zhu\cross.m, 306 , 2018-01-12
ruan zhu\DeepLearnToolbox\2019负荷.xlsx, 243570 , 2020-03-27
ruan zhu\DeepLearnToolbox\EMDDBN\AEMO_importdata_one.m, 1068 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\AEMO_importdata_two.m, 1068 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_NSW.mat, 68825 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_QLD.mat, 66211 , 2015-01-04
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_SA.mat, 58170 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_TAS.mat, 55411 , 2014-09-16
ruan zhu\DeepLearnToolbox\EMDDBN\Datasets\AEMO_VIC.mat, 67017 , 2015-07-02
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\.travis.yml, 249 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeapplygrads.m, 1219 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caebbp.m, 917 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caebp.m, 1011 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caedown.m, 259 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeexamples.m, 754 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caenumgradcheck.m, 3618 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caesdlm.m, 845 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caetrain.m, 1148 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\caeup.m, 489 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\max3d.m, 173 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\scaesetup.m, 1937 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CAE\scaetrain.m, 270 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnapplygrads.m, 575 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnbp.m, 2141 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnff.m, 1774 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnnumgradcheck.m, 3430 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnnsetup.m, 2020 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnntest.m, 193 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CNN\cnntrain.m, 845 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\CONTRIBUTING.md, 544 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\create_readme.sh, 744 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\data\mnist_uint8.mat, 14735220 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbnsetup.m, 557 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbntrain.m, 232 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\dbnunfoldtonn.m, 425 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmdown.m, 90 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmtrain.m, 1401 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\DBN\rbmup.m, 89 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\LICENSE, 1313 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnapplygrads.m, 628 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnbp.m, 1638 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnchecknumgrad.m, 704 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nneval.m, 811 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnff.m, 1848 , 2019-04-30
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnpredict.m, 192 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnsetup.m, 1844 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nntest.m, 184 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nntrain.m, 2415 , 2019-04-22
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\NN\nnupdatefigures.m, 1858 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\README.md, 8730 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\README_header.md, 2256 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\REFS.md, 950 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\SAE\saesetup.m, 132 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\SAE\saetrain.m, 308 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\runalltests.m, 165 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_CNN.m, 981 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_DBN.m, 1031 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_NN.m, 3247 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_example_SAE.m, 934 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\allcomb.m, 2618 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\expand.m, 1958 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flicker.m, 208 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flipall.m, 80 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\fliplrf.m, 543 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\flipudf.m, 576 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\im2patches.m, 313 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\isOctave.m, 108 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\makeLMfilters.m, 1895 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\myOctaveVersion.m, 169 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\normalize.m, 97 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\patches2im.m, 242 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\randcorr.m, 283 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\randp.m, 2083 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\rnd.m, 49 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\sigm.m, 48 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\sigmrnd.m, 126 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\softmax.m, 256 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\tanh_opt.m, 54 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\visualize.m, 1072 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\whiten.m, 183 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\deeplearning\util\zscore.m, 137 , 2014-06-26
ruan zhu\DeepLearnToolbox\EMDDBN\EMD_DBN_one.m, 3964 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\EMD_DBN_two.m, 3935 , 2020-07-03
ruan zhu\DeepLearnToolbox\EMDDBN\errormeasure.m, 631 , 2017-03-30
ruan zhu\DeepLearnToolbox\EMDDBN\errperf.m, 5289 , 2019-04-22
ruan zhu\DeepLearnToolbox\EMDDBN\nnpredicty.m, 140 , 2014-07-06
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\bugfix.sh, 216 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc.m, 2354 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc2.m, 2362 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc2_fix.m, 2312 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\cemdc_fix.m, 2305 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emd.m, 22275 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emdc.m, 2280 , 2015-03-11
ruan zhu\DeepLearnToolbox\EMDDBN\package_emd\EMDs\emdc_fix.m, 2141 , 2015-03-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Lab2
    RGB to gray scale conversion of image.
    2011-08-18 19:33:32下载
    积分:1
  • FBD-tool
    利用matlab编程实现的大数据处理工具,通过分析数据规律,得到其最佳分布参数(Programming using matlab big data processing tools, by analyzing the data rule to obtain the optimal distribution parameters)
    2014-09-26 19:40:53下载
    积分:1
  • DD3232
    matlab毕业编程【谷速软件】Archivox房间脉冲响应测量 (Graduation matlab software programming speed [Valley] Archivox room impulse response measurement)
    2015-01-07 22:43:31下载
    积分:1
  • 4MatLab-new
    关于matlab的方法及实例,有效,全面,是数学建模的好帮手(about matlab)
    2010-07-22 20:20:08下载
    积分:1
  • TSP_Particle
    在MATLAB中用粒子群算法解决TSP问题。(use the particle swarm optimization(PSO) to solve the TSP problem。)
    2010-01-17 21:37:20下载
    积分:1
  • cobol-Source
    说明:  关于大型机的内容,是cobol语言,大家可以仔细研习(Content on the mainframe is the cobol language, we can carefully study)
    2011-04-08 22:22:28下载
    积分:1
  • Adaptive-finite-element-method
    matlab 自适应有限元方法,主要为二维椭圆型方程(Adaptive finite element method for two-dimensional elliptic equations)
    2013-01-14 19:36:32下载
    积分:1
  • 用于时间序列的功率谱分析 power spectrum
    用于时间序列的功率谱分析,如潮位时间序列分析周期,并会进行红白噪声的检验。(Power spectrum for time series analysis, time series analysis period waves bit, and will be red, white noise test.)
    2014-04-27 22:41:32下载
    积分:1
  • chapte5
    基带数字传输系统matlab仿真 现代通信系统,使用matlab(Base-band digital transmission system matlab simulation of modern communication systems, the use of matlab)
    2008-06-08 01:31:47下载
    积分:1
  • QAMXIANGP
    本程序仿真了16QAM信号的载波相偏估计的HOS算法,整个算法实现分为(1)模拟发送端发送16QAM信号;(2)加入相偏来模拟通过信道后有相偏的测试信号;(3)利用HOS算法进行相偏估计与纠正;(4)输出星座图。(This procedure simulated a 16QAM signal carrier phase offset estimate of the HOS algorithm, the algorithm is divided into (1) analog transmitter to send 16QAM signal (2) by the inclusion of partial to simulate the channel after the phase offset of the test signal (3 ) algorithm using HOS phase offset estimate and correction (4) output constellation.)
    2010-08-31 21:06:21下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载