登录
首页 » matlab » 随机森林

随机森林

于 2020-07-05 发布
0 414
下载积分: 1 下载次数: 9

代码说明:

说明:  随机森林算法与 Bagging 算法类似,均是基于 Bootstrap 方法重采样,产生多个训练集。不同的是,随机森林算法在构建决策树的时候,采用了随机选取分裂属性集的方法 本程序中,将乳腺肿瘤病灶组织的细胞核显微图像的 10 个量化特征作为模型的输入,良性乳腺肿瘤和恶性乳腺肿瘤作为模型的输出。用训练集数据进行随机森林分类器的创建,然后对测试集数据进行仿真测试,最后对测试结果进行分析。(Similar to bagging algorithm, random forest algorithm is based on bootstrap resampling to generate multiple training sets. The difference is that the random forest algorithm uses the method of randomly selecting the split attribute set when constructing the decision tree In this program, 10 quantitative features of nuclear microscopic image of breast tumor tissue are taken as the input of the model, and the benign and malignant breast tumor are taken as the output of the model. The training set data is used to create the random forest classifier, then the test set data is simulated and the test results are analyzed.)

文件列表:

随机森林, 0 , 2020-07-05
随机森林\MexStandalone, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile, 2693 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\README.txt, 3128 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Version_History.txt, 1311 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_windows.m, 1589 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw32, 32256 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\README.txt, 2623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Version_History.txt, 253 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_windows.m, 801 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_train.mexw32, 28672 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9505 , 2013-09-02
随机森林\Readme.txt, 396 , 2013-09-02
随机森林\data.mat, 86267 , 2009-11-29
随机森林\main.m, 2566 , 2013-09-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • WaveDisp
    说明:  关于导波的波动方程的源码,可以在matlab上直接使用(The source code of wave equation of guided wave can be directly used in MATLAB)
    2020-09-07 17:48:04下载
    积分:1
  • 八路AD采集adc128s022
    FPGA AD采集八路数据,12位分辨率,小梅哥FPGA的开发程序,实测可用(FPGA AD collects eight path data, 12 bit resolution, and the development program of Mayo FPGA.)
    2020-12-17 16:59:11下载
    积分:1
  • cf701
    利用最小二乘算法实现对三维平面的拟合,阵列信号处理的高分辨率估计,实现了图像的加水印,去噪,加噪声等功能。( Least-squares algorithm to fit a three-dimensional plane, High-resolution array signal processing estimates, Realize image watermarking, de-noising, plus noise and other functions.)
    2017-05-17 16:22:47下载
    积分:1
  • wvfilter
    维纳滤波matlab源程序,完全由自己编写的代码实现,没有涉及到内部函数,很容易理解(Wiener filtering matlab source code, written entirely by its own code to achieve, does not involve the internal functions, it is easy to understand)
    2010-02-18 14:35:52下载
    积分:1
  • 信号与系统(第二版)(完整版本)
    说明:  《信号与系统》课本,郑君里,应启珩,杨为理。 第三版清晰版本, 第二版较清晰版本("Signal and system" textbook, Zheng Junli, should be Qi Heng, Yang Weili Clear version of the third edition, clear version of the second edition)
    2020-10-19 20:57:25下载
    积分:1
  • 连续投影算法
    说明:  可以实现光谱特征波段的提取,减少建模时间。(It can realize the extraction of spectral characteristic band and reduce the modeling time.)
    2020-04-18 10:24:31下载
    积分:1
  • [计算机程序的构造和解释].(中文版).清晰版.pdf
    关于lisp和计算机的程序的理解,相当有价值的一本书 适合初学者。有一定经验者可适当观看(about scheme the dialect of lisp)
    2018-09-24 10:07:38下载
    积分:1
  • glo
    说明:  c语言编程调用gpu硬件资源,在global函数中调用global函数,主要是并行程序调用并行(C language programming calls GPU hardware resources and global function in global function, mainly parallel program calls parallel)
    2020-06-21 04:40:01下载
    积分:1
  • Que
    定义循环队列,完成队列的基本操作:入队和出队等(Defined circular queue, the queue to complete the basic steps: into the team and the teams)
    2011-06-04 10:39:56下载
    积分:1
  • IR
    说明:  对IQ接收器最重要的两个参数,即I和Q两路分量之间的幅度一致性和相位正交性,可采 用如下办法计算:把I、Q 两路信号分别作FFT ,找出频域内信号的幅度,即可算得两路分量的幅度一 致性 把I、Q两路信号合成一个复数信号,作FFT ,对得到的频谱求镜像抑制比(即频域内的信号与信号镜像的幅度比) ,通过镜像抑制比和幅度一致性,可求出接收机的I和Q两路分量之间的相位正交性。(IQ receiver for the two most important parameters, namely I and Q components of two-way consistency between the amplitude and phase orthogonality may be adopted calculated using the following method: to I, Q 2 signals, respectively for FFT, to find a frequency domain signal amplitude, can be considered as two-way component caused by the range of 1 the I, Q 2 signals into one complex signal for FFT, the spectrum demand of the received image rejection ratio (ie, frequency domain signal and magnitude of the signal mirror ratio), through the image rejection ratio and extent of consistency, the receiver can be derived I and Q phase between the two-way component orthogonality.)
    2009-09-21 17:57:34下载
    积分:1
  • 696518资源总数
  • 106235会员总数
  • 12今日下载