登录
首页 » matlab » 随机森林

随机森林

于 2020-07-05 发布
0 415
下载积分: 1 下载次数: 9

代码说明:

说明:  随机森林算法与 Bagging 算法类似,均是基于 Bootstrap 方法重采样,产生多个训练集。不同的是,随机森林算法在构建决策树的时候,采用了随机选取分裂属性集的方法 本程序中,将乳腺肿瘤病灶组织的细胞核显微图像的 10 个量化特征作为模型的输入,良性乳腺肿瘤和恶性乳腺肿瘤作为模型的输出。用训练集数据进行随机森林分类器的创建,然后对测试集数据进行仿真测试,最后对测试结果进行分析。(Similar to bagging algorithm, random forest algorithm is based on bootstrap resampling to generate multiple training sets. The difference is that the random forest algorithm uses the method of randomly selecting the split attribute set when constructing the decision tree In this program, 10 quantitative features of nuclear microscopic image of breast tumor tissue are taken as the input of the model, and the benign and malignant breast tumor are taken as the output of the model. The training set data is used to create the random forest classifier, then the test set data is simulated and the test results are analyzed.)

文件列表:

随机森林, 0 , 2020-07-05
随机森林\MexStandalone, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile, 2693 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\README.txt, 3128 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Version_History.txt, 1311 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_windows.m, 1589 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw32, 32256 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\README.txt, 2623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Version_History.txt, 253 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_windows.m, 801 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_train.mexw32, 28672 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9505 , 2013-09-02
随机森林\Readme.txt, 396 , 2013-09-02
随机森林\data.mat, 86267 , 2009-11-29
随机森林\main.m, 2566 , 2013-09-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MATLAB智能算法30个案例分析
    说明:  本书采用案例形式,以智能算法为主线,讲解了遗传算法.免疫算法,退火算法.粒子群算法,鱼群算法,蚁群算法和神经网络算法等最常用的智能算法的MATLAB实现,本书共给出30个案例,每个案例都是一个使用智能算法解决问题的具体实例,所有案例均由理论讲解、案例背景.MATLAB程序实现和扩展阅读四个部分组成,并配有完整的程序源码。(This book uses case form and takes intelligent algorithm as the main line to explain the matlab implementation of the most commonly used intelligent algorithms, such as genetic algorithm, immune algorithm, annealing algorithm, particle swarm optimization algorithm, fish swarm algorithm, ant colony algorithm and neural network algorithm. There are 30 cases in this book, and each case is a specific example of using intelligent algorithm to solve problems, All cases are composed of theoretical explanation, case background, matlab program implementation and extended reading, and complete program source code.)
    2020-10-15 21:20:30下载
    积分:1
  • uart
    串口uart文档及原程序,适合初学者学习(Serial uart document and the original program)
    2017-11-07 10:01:27下载
    积分:1
  • SlidingModeControl
    滑模控制的经典算例程序,可以帮助初学者快速掌握滑模控制的编程思想(Sliding mode control procedures for the classic examples that can help beginners master the sliding mode control Express programming thought)
    2009-02-25 09:56:47下载
    积分:1
  • DMC
    很好的预测控制DMC程序,适合初学者了解研究学习,大家有空可以一起交流啊(Good DMC predictive control procedures, suitable for beginners to understand the research study, we can work together free exchange ah)
    2009-01-09 14:13:13下载
    积分:1
  • 经典中的经典!STL分析
    这是STL(标准模板库)学习的经典书籍,书中大量详细的剖析了STL的源码,相信认真读过这本书的读者用STL进行编程的能力会有很大提高(STL (Standard Template Library) learning the classic books, book a lot of detailed analysis of the source of STL, I believe carefully read this book readers with STL programming capacity will be greatly improved)
    2005-05-12 06:54:31下载
    积分:1
  • 分数阶傅里叶变换frft数值计算
    我最近在研究frft-分数阶傅里叶变换的数值计算问题,主要是Ozaktas提出的采样型算法,以及Pei 等提出的采样型算法。(I have recently studied the numerical computation of frft- fractional Fourier transform, mainly the sampling algorithm proposed by Ozaktas, and the sampling algorithm proposed by Pei.)
    2017-12-05 18:55:46下载
    积分:1
  • geirt
    毕设内容,高光谱图像基本处理,遗传算法无功优化,小波包分析提取振动信号中的特征频率。( Complete set content, basic hyperspectral image processing, Genetic algorithm based reactive power optimization, Wavelet packet analysis to extract vibration signal characteristic frequency.)
    2017-05-15 15:27:51下载
    积分:1
  • slidingmode2
    刘金坤老师的滑模控制程序,可以实现对非线性,系统参数部分未知的系统控制。有一定的抗干扰能力(Liujinkun teachers sliding mode control procedures can be achieved right nonlinear system parameters part of the unknown system. A certain degree of anti-jamming capability)
    2006-06-20 16:47:34下载
    积分:1
  • 新建 文档
    外汇网格交易源码,提供给大家,于大家一起学习(Foreign exchange grid transaction source code)
    2018-04-08 10:06:39下载
    积分:1
  • MatlabSimulationCode
    滑模变结构控制MATLAB仿真的原程序 本书从MATLAB仿真角度系统地介绍了滑模变结构控制的基本理论、基本方法和应用技术,是作者多年来从事控制系统教学和科研工作的结晶,同时融入了国内外同行近年来所取得的新成果。全书共分10章,包括滑模变结构控制发展综述、连续时间系统滑模控制、离散时间系统滑模控制、模糊滑模控制、神经滑模控制、基于反演设计的滑模控制、动态滑模控制、基于干扰估计的滑模控制、Terminal滑模控制以及几种新型滑模控制。每种控制方法都通过MATLAB仿真程序进行了仿真分析。(matlab code)
    2010-03-04 21:31:56下载
    积分:1
  • 696518资源总数
  • 106253会员总数
  • 14今日下载