登录
首页 » matlab » 随机森林

随机森林

于 2020-07-05 发布
0 416
下载积分: 1 下载次数: 9

代码说明:

说明:  随机森林算法与 Bagging 算法类似,均是基于 Bootstrap 方法重采样,产生多个训练集。不同的是,随机森林算法在构建决策树的时候,采用了随机选取分裂属性集的方法 本程序中,将乳腺肿瘤病灶组织的细胞核显微图像的 10 个量化特征作为模型的输入,良性乳腺肿瘤和恶性乳腺肿瘤作为模型的输出。用训练集数据进行随机森林分类器的创建,然后对测试集数据进行仿真测试,最后对测试结果进行分析。(Similar to bagging algorithm, random forest algorithm is based on bootstrap resampling to generate multiple training sets. The difference is that the random forest algorithm uses the method of randomly selecting the split attribute set when constructing the decision tree In this program, 10 quantitative features of nuclear microscopic image of breast tumor tissue are taken as the input of the model, and the benign and malignant breast tumor are taken as the output of the model. The training set data is used to create the random forest classifier, then the test set data is simulated and the test results are analyzed.)

文件列表:

随机森林, 0 , 2020-07-05
随机森林\MexStandalone, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile, 2693 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\README.txt, 3128 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\Version_History.txt, 1311 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\compile_windows.m, 1589 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw32, 32256 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\README.txt, 2623 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\Version_History.txt, 253 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\compile_windows.m, 801 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_predict.mexw32, 20480 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\mexRF_train.mexw32, 28672 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src, 0 , 2019-03-11
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2020-07-05
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2013-09-02
随机森林\MexStandalone\randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9505 , 2013-09-02
随机森林\Readme.txt, 396 , 2013-09-02
随机森林\data.mat, 86267 , 2009-11-29
随机森林\main.m, 2566 , 2013-09-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 《ANSYS在土木工程实例详解》配套资
    ANSYS土木工程实例代码,是学习ANSYS软件的必备资料(ANSYS civil engineering example code, is to learn the necessary information ANSYS software)
    2017-06-14 22:29:17下载
    积分:1
  • ahuqx
    有小波分析的盲信号处理,课程设计时编写的matlab程序代码,用于时频分析算法。( There Wavelet Analysis Blind Signal Processing, Course designed to prepare the matlab program code, For time-frequency analysis algorithm.)
    2017-05-08 14:51:24下载
    积分:1
  • MATLAB智能算法30个案例分析
    说明:  本书采用案例形式,以智能算法为主线,讲解了遗传算法.免疫算法,退火算法.粒子群算法,鱼群算法,蚁群算法和神经网络算法等最常用的智能算法的MATLAB实现,本书共给出30个案例,每个案例都是一个使用智能算法解决问题的具体实例,所有案例均由理论讲解、案例背景.MATLAB程序实现和扩展阅读四个部分组成,并配有完整的程序源码。(This book uses case form and takes intelligent algorithm as the main line to explain the matlab implementation of the most commonly used intelligent algorithms, such as genetic algorithm, immune algorithm, annealing algorithm, particle swarm optimization algorithm, fish swarm algorithm, ant colony algorithm and neural network algorithm. There are 30 cases in this book, and each case is a specific example of using intelligent algorithm to solve problems, All cases are composed of theoretical explanation, case background, matlab program implementation and extended reading, and complete program source code.)
    2020-10-15 21:20:30下载
    积分:1
  • Adc
    实现对逆变器的三相电流、三相电压、三相IGBT温度、三相的频率等采样,涉及了应用层程序和底层程序(Sampling of three-phase current, three-phase voltage, three-phase IGBT temperature and three-phase frequency of inverters is realized, which involves application layer program and bottom layer program.)
    2020-06-20 10:00:01下载
    积分:1
  • ANSYS-APDL-Examples
    有限元分析软件ANSYS的编程语言APDL写的工程实例,附有丰富的注解。(Examples of the project with ANSYS programming language APDL , accompanied by many notes.)
    2021-04-19 08:18:51下载
    积分:1
  • mimo_channelnew
    mimo信道模型,对于信道仿真的时候非常有用,都是matlab程序(mimo channels model for the channel simulation of very useful and procedures are Matlab)
    2021-03-02 17:29:34下载
    积分:1
  • 金融数量分析——基于MATLAB编程(第4版)@郑志勇
    说明:  本书注重理论与实践相结合,通过实际案例和编程实现让读者理解理论在实践中的应用;同时还充分强 调“案例的实用性、程序的可模仿性”,且在案例程序中附有详细的注释。例如,投资组合管理、KMV模型计 算、期权定价模型与数值方法、风险价值VaR的计算等案例程序,读者可以直接使用或根据需要在源代码基 础上进行修改使用。(This book pays attention to the combination of theory and practice, through practical cases and programming to enable readers to understand the application of theory in practice; at the same time, it fully emphasizes "the practicality of cases, the imitatability of procedures", and has detailed notes in the case procedures. For example, case programs such as portfolio management, KMV model calculation, option pricing model and numerical method, VAR calculation can be used directly or modified on the basis of source code as required.)
    2020-03-20 18:16:40下载
    积分:1
  • 079842-01
    说明:  《深入浅出Python机器学习》源码 ipynb格式("Deep and Simple Python Machine Learning" Source Code ipynb Format)
    2020-06-17 13:00:02下载
    积分:1
  • 开灯和关灯游戏PA
    说明:  第一行输入灯泡个数,第二行输入灯泡状态。(The first line inputs the number of bulbs, and the second line inputs the bulb status.)
    2020-06-24 19:20:02下载
    积分:1
  • jQuery
    Jquery 基础教程的原码,作者 Jonathan chaffer, Karl Sweedberg(Learning JQuery 1.3 source code author: Jonathan chaffer, Karl Sweedberg)
    2011-05-14 14:03:51下载
    积分:1
  • 696518资源总数
  • 106259会员总数
  • 28今日下载