登录
首页 » matlab » CNN_Fusion

CNN_Fusion

于 2021-02-25 发布
0 223
下载积分: 1 下载次数: 9

代码说明:

说明:  基于卷积神经网络的图像融合方法,首次将卷积神经网络应用到图像融合领域。(The image fusion method based on convolutional neural network is first applied to image fusion.)

文件列表:

boxfilter.m, 931 , 2013-10-04
CNN_Fusion.m, 7782 , 2018-12-24
guidedfilter.m, 957 , 2013-10-04
lowcnn.m, 358 , 2018-12-24
maxpooling_s2.m, 300 , 2016-01-28
model, 0 , 2018-12-19
model\cnnmodel.mat, 32429373 , 2016-02-03
README.txt, 1440 , 2018-06-18
results, 0 , 2018-12-24
results\clcok_decision.jpg, 9702 , 2018-12-19
results\clcok_decision_1.jpg, 9725 , 2018-12-19
results\clock.jpg, 19851 , 2018-12-19
results\fused_cnn.jpg, 24465 , 2018-12-19
results\fused_cnn.tif, 818656 , 2018-12-19
results\img1_decision.jpg, 15947 , 2018-12-19
results\lowpassfused.jpg, 10785 , 2018-12-24
Script.m, 348 , 2018-12-19
sourceimages, 0 , 2018-12-24
sourceimages\1left.jpg, 53193 , 2018-12-19
sourceimages\1right.jpg, 52409 , 2018-12-19
sourceimages\children_1.tif, 818672 , 2016-01-30
sourceimages\children_2.tif, 818656 , 2016-01-30
sourceimages\clock1.tif, 167703 , 2017-08-21
sourceimages\clock1_low_pass.jpg, 10451 , 2018-12-23
sourceimages\clock2.tif, 149501 , 2017-08-21
sourceimages\clock2_low_pass.jpg, 10501 , 2018-12-23

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PCA
    主成分分析 ( Principal Component Analysis , PCA )或者主元分析。是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。给定 n 个变量的 m 个观察值,形成一个 n ′ m 的数据矩阵, n 通常比较大。对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。但是,在一般情况下,并不能直接找出这样的关键变量。这时我们可以用原有变量的线性组合来表示事物的主要方面, PCA 就是这样一种分析方法。(Principal component analysis (Principal Component Analysis, PCA) or PCA. Is a statistical method to grasp the principal contradiction of things, it can be resolved diverse things out the main factors, revealing the essence of things, simplifying complex problems. The purpose of calculating the main component of high-dimensional data is projected to a lower dimensional space. Given n variables of m observations, forming an n ' m of the data matrix, n is usually large. For a complex matters described by several variables, it is difficult to know, so if you can grab something to focus on key aspects of analysis? If the main aspects of things just reflected on several key variables, we only need to separate out these few variables, for detailed analysis. However, in general, does not directly identify this critical variables. Then we can represent the major aspects of things with a linear combination of the original variables, PCA is one such analysis.)
    2021-01-28 21:48:40下载
    积分:1
  • code
    本程序实现的是绘制一个单位立方体正平行投影图的程序,可以画出变换后的图形。运行环境为vc++6.0,内附有可执行文件以及所有源代码。(Implementation of this program is drawing a unit cube are parallel to the projection of the program, you can draw the transformed graph. Operating environment for vc++6.0 there is an executable file containing the source code and all.)
    2020-06-30 12:00:02下载
    积分:1
  • mfile
    说明:  matlab导出iges格式的程序文件,可以matlab读取和导出(The name of the resource property which is the same as the topic name)
    2021-02-05 11:39:57下载
    积分:1
  • MRT_Steup
    说明:  modis一般是hdf数据,使用MRT(MODIS Reprojection Tool)工具可以将数据装换为.tif格式以及提取拼接(Modis is commonly HDF data, and the data can be reprojected to the.tif format and outprojection using the MRT (modis Reprojection Tool))
    2020-06-23 08:40:02下载
    积分:1
  • RK龙格库塔计算微分方程组
    使用4阶龙格库塔定理计算一阶微分方程组,方程组有3个方程(RK calculation of differential equations)
    2018-04-13 13:01:19下载
    积分:1
  • cs,rd,rma
    用于雷达成像的三种不同算法,分别为CS算法、RD算法、RMA算法(cs ,rd ,rma algorithm)
    2021-04-27 20:38:44下载
    积分:1
  • PCA+SVM
    先用PCA降维,在利用支持向量机进行分类,这个分类是二分类,所以PCA的降维降到两维即可分类。(Firstly, PCA dimensionality reduction is used to conduct classification with support vector machine. This classification is binary classification, so the dimensionality reduction of PCA can be reduced to two dimensions for classification.)
    2018-12-02 16:03:37下载
    积分:1
  • carplate
    说明:  首先对车牌识别系统的现状和已有的技术进行深入的研究,然后开发出一个基于 Python 的车牌识别系统,文中先对车辆图像进行高斯去噪、灰度化和边缘检测等预处理方法,然后用颜色特征和形态特征相结合的方法来确定车牌位置,用彩色分割法来完成车牌分割,最后,运用 SVM 分类训练器完成字符识别并使用Python 软件环境进行车牌识别的仿真实验。(License plate recognition based on SVM)
    2020-10-29 15:49:57下载
    积分:1
  • GMM
    说明:  基于混合高斯模型和matlab代码实现的前景提取(Foreground extraction based on gaussian mixture model)
    2021-02-28 19:29:35下载
    积分:1
  • Locating-Voltage-Sags
    电压跌落是最严重的动态电能质量问题之一, 精确定位电压跌落起止时间是应对电压跌落问题的 重要前提和基础。由于电压采样信号往往有噪声分 量,现有的方法在定位电压跌落的起止时间时存在 局限性。本文提出利用多小波变换及相邻系数去噪 的电压跌落定位方法。多小波兼有对称性、正交性、 有限支撑性和二阶消失矩等优异的信号处理性能, 利用GHM多小波可以准确定位电压跌落起止时间。 多小波变换系数在每层之间具有对应关系,多小波 相邻系数将紧相邻的若干个系数作为一个整体来确 定阈值,考虑了系数之间的相关性,能获得更好的 去噪效果。通过 Matlab 进行仿真验证,仿真结果表 明,所提出的方法的正确性。 (Voltage sag is one of the most serious dynamic power quality problems. Critical start-time and end-time are important indices for voltage sags. But the sampling signals often have noisy component, the locations of start-time and end-time are hard to get. Wavelet is an effective tool for those non-stationary signal processing and has been used in this field. Local feature in the signal can be enlarged after the transformation using the scalar wavelet. But scalar wavelets cannot contain orthogonality, symmetry, compact support and higher order of vanishing moments simultaneously. In this thesis, multi-wavelets GHM is used to detect and locate power quality disturbances. Multi-wavelets offer many excellent properties such as the same approximation order but more compact support. The dependence of the multi-wavelets coefficients varies with the level, so neighboring coefficien)
    2014-03-25 17:08:50下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载