登录
首页 » Python » ransac

ransac

于 2020-07-04 发布
0 157
下载积分: 1 下载次数: 2

代码说明:

说明:  sift特征提取,ransac剔除匹配点进行优化,实现图像拼接。(SIFT feature extraction, RANSAC eliminate matching points for optimization, to achieve image mosaic.)

文件列表:

ransac\1.jpg, 63641 , 2020-07-02
ransac\1.sift, 1392675 , 2020-07-02
ransac\2.jpg, 56442 , 2020-07-02
ransac\2.sift, 782044 , 2020-07-02
ransac\3.jpg, 66922 , 2020-07-02
ransac\3.sift, 1139110 , 2020-07-02
ransac\sift.exe, 23040 , 2020-07-02
ransac\sift.py, 3924 , 2020-07-01
ransac\test.py, 1988 , 2020-07-02
ransac\tmp.pgm, 1555217 , 2020-07-02
ransac\vl.dll, 303104 , 2020-07-02
ransac\vlfeat-0.9.20-master\.gitattributes, 59 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\phow_caltech101.m, 11594 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\encodeImage.m, 5278 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\experiments.m, 6905 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\extendDescriptorsWithGeometry.m, 822 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\getDenseSIFT.m, 1679 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\readImage.m, 919 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\setupCaltech256.m, 2495 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\setupFMD.m, 1197 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\setupGeneric.m, 4024 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\setupScene67.m, 2368 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\setupVoc.m, 5189 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\trainEncoder.m, 6226 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\recognition\traintest.m, 6097 , 2020-07-02
ransac\vlfeat-0.9.20-master\apps\sift_mosaic.m, 4621 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\aib, 8396 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\libvl.so, 293498 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\mser, 21717 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\sift, 26345 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_gauss_elimination, 8327 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_getopt_long, 8597 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_gmm, 13455 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_heap-def, 12462 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_host, 8345 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_imopv, 8611 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_kmeans, 8500 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_liop, 8389 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_mathop, 12490 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_mathop_abs, 8450 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_nan, 8374 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_qsort-def, 12413 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_rand, 8386 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_sqrti, 8305 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_stringop, 12718 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_svd2, 8459 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_threads, 8669 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnx86\test_vec_comp, 8635 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\.dirstamp, 29 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\aib, 8744 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\aib.d, 2362 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\libvl.so, 427408 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\mser, 26624 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\mser.d, 2446 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\.dirstamp, 29 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\aib.d, 115 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\aib.o, 9368 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\array.d, 111 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\array.o, 4288 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\covdet.d, 171 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\covdet.o, 53088 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\dsift.d, 143 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\dsift.o, 12008 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\fisher.d, 175 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\fisher.o, 12200 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\generic.d, 106 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\generic.o, 16032 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\getopt_long.d, 135 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\getopt_long.o, 6320 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\gmm.d, 213 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\gmm.o, 47384 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\hikmeans.d, 136 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\hikmeans.o, 9416 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\hog.d, 115 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\hog.o, 16976 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\homkermap.d, 169 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\homkermap.o, 9736 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\host.d, 97 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\host.o, 3576 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\ikmeans.d, 193 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\ikmeans.o, 26448 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\imopv.d, 165 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\imopv.o, 33688 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\imopv_sse2.d, 173 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\imopv_sse2.o, 4456 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\kdtree.d, 141 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\kdtree.o, 31256 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\kmeans.d, 186 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\kmeans.o, 65032 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\lbp.d, 115 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\lbp.o, 4560 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\liop.d, 145 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\liop.o, 13208 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\mathop.d, 175 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\mathop.o, 20144 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\mathop_avx.d, 174 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\mathop_avx.o, 6840 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\mathop_sse2.d, 179 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\mathop_sse2.o, 11192 , 2020-07-02
ransac\vlfeat-0.9.20-master\bin\glnxa64\objs\mser.d, 107 , 2020-07-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • facedetectandrecognition-dlib-python3.6
    说明:  机器学习专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技 能,为包括人脸识别领域的人工智能的发展做出了极大的贡献。本文探索如何应用机器学习中的一些技术,使计算机更好地完成人脸识别领域中的人脸检测和人脸验证。 在人脸检测方面,针对如何快速、准确地检出人脸的问题,基于DLIB中特征模型,可以快速提取检测出人脸,并且提取出人脸特征点,主要作用就是快速检测定位人脸。在训练过程中,引入了ResNet机器学习算法,该算法采用多层卷积神经网络结构,对人脸进行多层特征提取和描述,得到人脸特征描述符。通过测试可以证实了上述方法能够检测和识别人脸。(In terms of face detection, for the problem of how to detect faces quickly and accurately, based on the feature model in DLIB, you can quickly extract and detect faces, and extract face feature points, the main role is to quickly detect and locate faces. In the training process, the VGG-FACE machine learning algorithm is introduced. This algorithm uses a multi-layer convolutional neural network structure to perform multi-layer feature extraction and description on the face to obtain the face feature descriptor. Tests can confirm that the above method can detect and recognize human faces.)
    2020-05-06 14:33:08下载
    积分:1
  • shuangsanjiaoxing
    输出一个具有一定大小的双三角形,该三角形中间最小(Output of a certain size with a double triangle, the triangle between the minimum)
    2009-11-13 15:02:26下载
    积分:1
  • 像去噪(matlab)
    使用中值,均值,小波,DCT,PCA五种方法实现对图像的去噪处理。(Five methods, median, mean, wavelet, DCT and PCA, are used to denoise the image.)
    2021-01-05 15:28:54下载
    积分:1
  • 乳腺肿瘤自动分割程序
    说明:  基于CV模型的自动分割,能够对灰度图分割操作(image segmentation Level set Chan-Vase)
    2019-06-09 14:00:37下载
    积分:1
  • 实现像的分割和识别 imagegaoduchang
    说明:  能实现图像的分割和识别,能够区分开近似颜色区域的影响(this code can perform image crop and recongition)
    2020-06-25 00:00:02下载
    积分:1
  • twoview_reconstruction
    基于matlab的三维重建代码,提取两幅图片的匹配点(Based on three-dimensional reconstruction of the matlab code, extract the two images match point)
    2021-01-14 10:28:47下载
    积分:1
  • barcode
    code 128 条码生成与译码演示 code 128 条码生成与译码演示(code 128 barcode generation and decoding demo code 128 barcode generation and decoding demo)
    2009-01-02 15:32:57下载
    积分:1
  • rgb2lab_lab2rgb
    实现了图像的rgb格式与lab格式的互相转化,方便大家在lab空间中处理图像(Achieved rgb image format and transform lab format to facilitate processing in the lab space images)
    2008-04-25 16:31:48下载
    积分:1
  • regionbased_seg
    区域分割算法 Steve Mathworks.com上牛人(Steve Mathworks.com regional segmentation algorithm on the cattle were)
    2008-04-28 21:30:15下载
    积分:1
  • XieFangXiangGuan
    协方相关算法获得电子散斑条纹图.带入变形前后两张散斑图片,可得到反映变形等势的条纹图形.(HS side-correlation algorithm to obtain the electronic speckle pattern. Into two speckle images before and after deformation, can reflect the deformation of equipotential stripes graphics.)
    2008-02-28 09:06:19下载
    积分:1
  • 696518资源总数
  • 104509会员总数
  • 10今日下载