登录
首页 » Python » unet-master 2

unet-master 2

于 2020-06-29 发布
0 131
下载积分: 1 下载次数: 4

代码说明:

说明:  使用unet对图像进行分割的源码,里面有训练集,可以根据自己的需要更换训练数据。(Use the source code of the image segmentation using UNET, which has a training set, you can change the training data according to your own needs.)

文件列表:

unet-master, 0 , 2020-06-24
unet-master\trainUnet.ipynb, 9916 , 2020-06-24
__MACOSX, 0 , 2020-06-29
__MACOSX\unet-master, 0 , 2020-06-29
__MACOSX\unet-master\._trainUnet.ipynb, 212 , 2020-06-24
unet-master\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\._.DS_Store, 120 , 2020-06-29
unet-master\dataPrepare.ipynb, 3831 , 2019-02-21
__MACOSX\unet-master\._dataPrepare.ipynb, 212 , 2019-02-21
unet-master\LICENSE, 1065 , 2019-02-21
__MACOSX\unet-master\._LICENSE, 212 , 2019-02-21
unet-master\Untitled.ipynb, 11919 , 2020-06-24
unet-master\__pycache__, 0 , 2020-06-24
unet-master\__pycache__\model.cpython-36.pyc, 2097 , 2020-06-24
unet-master\__pycache__\data.cpython-36.pyc, 3898 , 2020-06-24
unet-master\model.py, 3745 , 2019-02-21
__MACOSX\unet-master\._model.py, 212 , 2019-02-21
unet-master\README.md, 2552 , 2019-02-21
__MACOSX\unet-master\._README.md, 212 , 2019-02-21
unet-master\img, 0 , 2019-02-21
unet-master\img\0label.png, 178720 , 2019-02-21
__MACOSX\unet-master\img, 0 , 2020-06-29
__MACOSX\unet-master\img\._0label.png, 212 , 2019-02-21
unet-master\img\0test.png, 400739 , 2019-02-21
__MACOSX\unet-master\img\._0test.png, 212 , 2019-02-21
unet-master\img\u-net-architecture.png, 40580 , 2019-02-21
__MACOSX\unet-master\img\._u-net-architecture.png, 212 , 2019-02-21
__MACOSX\unet-master\._img, 212 , 2019-02-21
unet-master\.ipynb_checkpoints, 0 , 2020-06-24
unet-master\.ipynb_checkpoints\trainUnet-checkpoint.ipynb, 9802 , 2020-06-24
unet-master\.ipynb_checkpoints\Untitled-checkpoint.ipynb, 72 , 2020-06-24
unet-master\main.py, 821 , 2019-02-21
__MACOSX\unet-master\._main.py, 212 , 2019-02-21
unet-master\data, 0 , 2020-06-24
unet-master\data\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data, 0 , 2020-06-29
__MACOSX\unet-master\data\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane, 0 , 2020-06-24
unet-master\data\membrane\.DS_Store, 8196 , 2020-06-29
__MACOSX\unet-master\data\membrane, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\test, 0 , 2020-06-29
unet-master\data\membrane\test\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data\membrane\test, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\test\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\test\0_predict.png, 48695 , 2019-02-21
__MACOSX\unet-master\data\membrane\test\._0_predict.png, 212 , 2019-02-21
unet-master\data\membrane\test\1_predict.png, 54547 , 2019-02-21
__MACOSX\unet-master\data\membrane\test\._1_predict.png, 212 , 2019-02-21
unet-master\data\membrane\test\1.png, 213325 , 2019-02-21
__MACOSX\unet-master\data\membrane\test\._1.png, 212 , 2019-02-21
unet-master\data\membrane\test\0.png, 214932 , 2019-02-21
__MACOSX\unet-master\data\membrane\test\._0.png, 212 , 2019-02-21
__MACOSX\unet-master\data\membrane\._test, 212 , 2020-06-29
unet-master\data\membrane\test-volume.tif, 7871660 , 2019-02-21
__MACOSX\unet-master\data\membrane\._test-volume.tif, 212 , 2019-02-21
unet-master\data\membrane\train-volume.tif, 7870730 , 2019-02-21
__MACOSX\unet-master\data\membrane\._train-volume.tif, 212 , 2019-02-21
unet-master\data\membrane\train-labels.tif, 7869573 , 2019-02-21
__MACOSX\unet-master\data\membrane\._train-labels.tif, 212 , 2019-02-21
unet-master\data\membrane\train, 0 , 2020-06-24
unet-master\data\membrane\train\.DS_Store, 10244 , 2020-06-29
__MACOSX\unet-master\data\membrane\train, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\train\aug, 0 , 2020-06-29
unet-master\data\membrane\train\aug\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\aug, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\aug\._.DS_Store, 120 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\._aug, 212 , 2020-06-29
unet-master\data\membrane\train\label, 0 , 2020-06-29
unet-master\data\membrane\train\label\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\label, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\label\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\train\label\4.png, 14312 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._4.png, 212 , 2019-02-21
unet-master\data\membrane\train\label\2.png, 14052 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._2.png, 212 , 2019-02-21
unet-master\data\membrane\train\label\3.png, 13829 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._3.png, 212 , 2019-02-21
unet-master\data\membrane\train\label\1.png, 13977 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._1.png, 212 , 2019-02-21
unet-master\data\membrane\train\label\0.png, 14322 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._0.png, 212 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\._label, 212 , 2020-06-29
unet-master\data\membrane\train\image, 0 , 2020-06-29
unet-master\data\membrane\train\image\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\image, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\image\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\train\image\4.png, 189054 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._4.png, 212 , 2019-02-21
unet-master\data\membrane\train\image\2.png, 188971 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._2.png, 212 , 2019-02-21
unet-master\data\membrane\train\image\3.png, 187963 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._3.png, 212 , 2019-02-21
unet-master\data\membrane\train\image\1.png, 188189 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._1.png, 212 , 2019-02-21
unet-master\data\membrane\train\image\0.png, 187651 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._0.png, 212 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\._image, 212 , 2020-06-29
__MACOSX\unet-master\data\membrane\._train, 212 , 2020-06-24

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PFA_1
    经典的聚束SAR成像算法-极坐标格式成像算法(A typical imaging algorithm of spotlight mode SAR)
    2021-04-19 21:48:51下载
    积分:1
  • 23424646745
    易语言图像混色汇编版源码,易语言写的图形图象编程,很好的参考。(Easy language image color mixing assembly version of source code, easy to graphics programming language to write, a good reference.)
    2013-09-18 19:51:11下载
    积分:1
  • Lucy-Richardson
    Lucy Richardson algorithm for image restoration
    2012-10-23 13:40:33下载
    积分:1
  • ExtPhaseCorrelation
    数字图像相位相关性,对两幅图像位移的前后相位变化进行检测(Phase Correlation)
    2010-12-14 14:27:18下载
    积分:1
  • nighttime-dehazing-master
    说明:  采用通道差的引导滤波进行大气光估计和明暗通道混合的夜间去雾(The guiding filter of channel difference is used for atmospheric light estimation and night defogging with mixed light and dark channels)
    2021-03-22 18:23:29下载
    积分:1
  • Moving-Least-Squares-morphing
    利用最小二乘法实现图像变形,提出一种基于控制曲线集的移动最小二乘图像变形算法。根据图像的形状拓扑关系或轮廓信息设置点,生成控制曲线,移动控制曲线生成图像的仿射变换、相似变化、刚性变换。 (The technology of image deformation.Using Moving Least Squares.)
    2012-04-28 21:44:32下载
    积分:1
  • ImageMatch
    一个师兄编写的图像配准程序,其中sift代码匹配以及错误点检测值得参考学习。(A brother write image registration procedures, which sift code matches the reference point of error detection is worth learning.)
    2012-10-10 19:07:09下载
    积分:1
  • matlab稀疏表示代码
    matlab图像稀疏表示的代码。比较详细。(Matlab image sparse representation of code.)
    2018-04-13 14:30:05下载
    积分:1
  • bemd
    说明:  二维经验模态分解,分解图像等二维信号,可用于算法验证与学习(EMD This program calculates the Bidimensional EMD of a 2-d signal using the process of sifting. It is dependent on the function SIFT.)
    2011-02-26 20:03:08下载
    积分:1
  • demo_mtbot
    说明:  多目标跟踪,动态背景下实现多目标跟踪算法,算法优良,实时性和鲁棒性都比较好(Tracking, dynamic context to achieve multi-target tracking algorithm, algorithm quality, real-time and better robustness than)
    2010-04-26 19:45:39下载
    积分:1
  • 696518资源总数
  • 104228会员总数
  • 45今日下载