登录
首页 » Python » unet-master 2

unet-master 2

于 2020-06-29 发布
0 135
下载积分: 1 下载次数: 4

代码说明:

说明:  使用unet对图像进行分割的源码,里面有训练集,可以根据自己的需要更换训练数据。(Use the source code of the image segmentation using UNET, which has a training set, you can change the training data according to your own needs.)

文件列表:

unet-master, 0 , 2020-06-24
unet-master\trainUnet.ipynb, 9916 , 2020-06-24
__MACOSX, 0 , 2020-06-29
__MACOSX\unet-master, 0 , 2020-06-29
__MACOSX\unet-master\._trainUnet.ipynb, 212 , 2020-06-24
unet-master\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\._.DS_Store, 120 , 2020-06-29
unet-master\dataPrepare.ipynb, 3831 , 2019-02-21
__MACOSX\unet-master\._dataPrepare.ipynb, 212 , 2019-02-21
unet-master\LICENSE, 1065 , 2019-02-21
__MACOSX\unet-master\._LICENSE, 212 , 2019-02-21
unet-master\Untitled.ipynb, 11919 , 2020-06-24
unet-master\__pycache__, 0 , 2020-06-24
unet-master\__pycache__\model.cpython-36.pyc, 2097 , 2020-06-24
unet-master\__pycache__\data.cpython-36.pyc, 3898 , 2020-06-24
unet-master\model.py, 3745 , 2019-02-21
__MACOSX\unet-master\._model.py, 212 , 2019-02-21
unet-master\README.md, 2552 , 2019-02-21
__MACOSX\unet-master\._README.md, 212 , 2019-02-21
unet-master\img, 0 , 2019-02-21
unet-master\img\0label.png, 178720 , 2019-02-21
__MACOSX\unet-master\img, 0 , 2020-06-29
__MACOSX\unet-master\img\._0label.png, 212 , 2019-02-21
unet-master\img\0test.png, 400739 , 2019-02-21
__MACOSX\unet-master\img\._0test.png, 212 , 2019-02-21
unet-master\img\u-net-architecture.png, 40580 , 2019-02-21
__MACOSX\unet-master\img\._u-net-architecture.png, 212 , 2019-02-21
__MACOSX\unet-master\._img, 212 , 2019-02-21
unet-master\.ipynb_checkpoints, 0 , 2020-06-24
unet-master\.ipynb_checkpoints\trainUnet-checkpoint.ipynb, 9802 , 2020-06-24
unet-master\.ipynb_checkpoints\Untitled-checkpoint.ipynb, 72 , 2020-06-24
unet-master\main.py, 821 , 2019-02-21
__MACOSX\unet-master\._main.py, 212 , 2019-02-21
unet-master\data, 0 , 2020-06-24
unet-master\data\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data, 0 , 2020-06-29
__MACOSX\unet-master\data\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane, 0 , 2020-06-24
unet-master\data\membrane\.DS_Store, 8196 , 2020-06-29
__MACOSX\unet-master\data\membrane, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\test, 0 , 2020-06-29
unet-master\data\membrane\test\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data\membrane\test, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\test\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\test\0_predict.png, 48695 , 2019-02-21
__MACOSX\unet-master\data\membrane\test\._0_predict.png, 212 , 2019-02-21
unet-master\data\membrane\test\1_predict.png, 54547 , 2019-02-21
__MACOSX\unet-master\data\membrane\test\._1_predict.png, 212 , 2019-02-21
unet-master\data\membrane\test\1.png, 213325 , 2019-02-21
__MACOSX\unet-master\data\membrane\test\._1.png, 212 , 2019-02-21
unet-master\data\membrane\test\0.png, 214932 , 2019-02-21
__MACOSX\unet-master\data\membrane\test\._0.png, 212 , 2019-02-21
__MACOSX\unet-master\data\membrane\._test, 212 , 2020-06-29
unet-master\data\membrane\test-volume.tif, 7871660 , 2019-02-21
__MACOSX\unet-master\data\membrane\._test-volume.tif, 212 , 2019-02-21
unet-master\data\membrane\train-volume.tif, 7870730 , 2019-02-21
__MACOSX\unet-master\data\membrane\._train-volume.tif, 212 , 2019-02-21
unet-master\data\membrane\train-labels.tif, 7869573 , 2019-02-21
__MACOSX\unet-master\data\membrane\._train-labels.tif, 212 , 2019-02-21
unet-master\data\membrane\train, 0 , 2020-06-24
unet-master\data\membrane\train\.DS_Store, 10244 , 2020-06-29
__MACOSX\unet-master\data\membrane\train, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\train\aug, 0 , 2020-06-29
unet-master\data\membrane\train\aug\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\aug, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\aug\._.DS_Store, 120 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\._aug, 212 , 2020-06-29
unet-master\data\membrane\train\label, 0 , 2020-06-29
unet-master\data\membrane\train\label\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\label, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\label\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\train\label\4.png, 14312 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._4.png, 212 , 2019-02-21
unet-master\data\membrane\train\label\2.png, 14052 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._2.png, 212 , 2019-02-21
unet-master\data\membrane\train\label\3.png, 13829 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._3.png, 212 , 2019-02-21
unet-master\data\membrane\train\label\1.png, 13977 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._1.png, 212 , 2019-02-21
unet-master\data\membrane\train\label\0.png, 14322 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\label\._0.png, 212 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\._label, 212 , 2020-06-29
unet-master\data\membrane\train\image, 0 , 2020-06-29
unet-master\data\membrane\train\image\.DS_Store, 6148 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\image, 0 , 2020-06-29
__MACOSX\unet-master\data\membrane\train\image\._.DS_Store, 120 , 2020-06-29
unet-master\data\membrane\train\image\4.png, 189054 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._4.png, 212 , 2019-02-21
unet-master\data\membrane\train\image\2.png, 188971 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._2.png, 212 , 2019-02-21
unet-master\data\membrane\train\image\3.png, 187963 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._3.png, 212 , 2019-02-21
unet-master\data\membrane\train\image\1.png, 188189 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._1.png, 212 , 2019-02-21
unet-master\data\membrane\train\image\0.png, 187651 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\image\._0.png, 212 , 2019-02-21
__MACOSX\unet-master\data\membrane\train\._image, 212 , 2020-06-29
__MACOSX\unet-master\data\membrane\._train, 212 , 2020-06-24

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Median-filter
    中值滤波是一种非线性数字滤波器技术,经常用于去除图像或者其它信号中的噪声
    2013-06-03 17:32:58下载
    积分:1
  • SARAutoFocus
    说明:  机载合成孔径雷达自聚焦算法,没有实测数据,用的是点目标仿真(Airborne synthetic aperture radar algorithm for self-focusing, there is no measured data, using a point-target simulation)
    2008-10-21 23:13:24下载
    积分:1
  • pp
    说明:  利用vc++实现avi文件图像截取,avi图像即视屏图像(Use vc++ Achieve avi file image capture, avi video image that is, images)
    2008-12-17 23:26:31下载
    积分:1
  • (标准)Hough变换检测圆
    用于图像处理-圆检测,可检测多个圆,效果好(For image processing - circle detection, can detect multiple circles, the effect is good.)
    2018-06-29 16:12:18下载
    积分:1
  • dark_channel_new
    单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题,matlab代码注解详细,能很好地帮助理解算法过程。(improvement of a single image dehazing algorithm using dark channel prior,solving the problem of color distortion of sky and bright part!Having a good explain of the code,which could be helpful to understand the processing of the algorithm! )
    2012-10-25 09:20:55下载
    积分:1
  • OIF
    oif波段选择算法,可以用于对高光谱图像进行波段选择(oif band selection code of matlab)
    2018-03-19 22:32:55下载
    积分:1
  • 3
    说明:  运用低通滤波器,中心削波和自相关技术估计一段男性和女性语音信号的基音周期,画出基音轨迹曲线,给出估计准确率。(The use of low-pass filter, the center clipping and related technologies is estimated from a male and female speech signal pitch period, pitch trajectory drawn curves of estimated accuracy.)
    2010-05-07 14:51:01下载
    积分:1
  • 2019DSP实验
    锐化图片 拉普拉斯算法 两种方法 一种是自己写的一种是用了matlab里面自带的函数(ruihua picture Laplace there are two mechof a fi [as fs aflasl;nvb)
    2019-05-28 21:51:24下载
    积分:1
  • OMP
    说明:  matlab 实现高光谱图像处理中omp算法(OMP algorithm in hyperspectral image processing based on MATLAB)
    2021-01-08 16:15:20下载
    积分:1
  • Mybole
    实现对酒瓶子的边缘检测,背景差分,垂直和水平投影等,并可实现计数功能。(Achieve the bottles of edge detection, background difference, the vertical and horizontal projection, and to achieve counting.)
    2011-07-30 17:07:43下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载