登录
首页 » Others » MIMO雷达信号处理电子书

MIMO雷达信号处理电子书

于 2019-07-26 发布
0 265
下载积分: 1 下载次数: 13

代码说明:

mimo雷达信号处理电子书,英文版,目前为止唯一的一本介绍mimo雷达信号处理的专著。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 低压三相四线电力有源滤波器PSIM仿真模型
    380V三相四线电力有源滤波器PSIM仿真模型,适用于PSIM9.1版本,可补偿对称以及不对称的负载谐波电流和零序电流
    2020-12-09下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • windows系统苹方全套字体包(亲测可用)
    苹方字体下载和安装使用说明:1、 第一字体网提供的苹方字体下载之后均为通用的TTF字体文件格式,仅供学习之用,由于字库的设计需要付出大量的心血,若您需要将其用作商业用途,我们强烈建议您向原作者联系购买。2、 在不同操作系统上使用和安装苹方字体的方法:Windows系统的通用方法:打开“控制面板”,找到“外观”-“字体”,然后把下载的TTF文件复制粘贴到这里即可,然后重新打开Word或PS就可以看到了。Win7/ Win8系统: 鼠标右键单击已下载的苹方字体文件,在弹出菜单中选择 "Install" 即可完成。Windows XP系统: 除了上面的通用方法,您也可以把文件复制到文件夹“
    2021-05-06下载
    积分:1
  • fluent UDF 生物质燃烧的
    该程序对学习fluent UDF有很大的帮助里面涉及到很大宏的使用
    2020-12-11下载
    积分:1
  • music算法的matlab
    自己编写的music算法,仿真了3个到达角测量
    2020-12-07下载
    积分:1
  • 同义词词林(哈工大扩展版) + Python词语相似度计算源代码
    词语相似度计算,语义计算,用于人工智能,自然语言处理,数据挖掘,舆情分析等众多领域。
    2020-06-27下载
    积分:1
  • C8051F系列中文数据手册.zip
    【实例简介】C8051F系列中文数据手册,潘琢金译,包含各个型号,可供编程或学习入门时参考。
    2021-11-26 00:35:27下载
    积分:1
  • 用matlab实现自适应图像阈值分割(最大类间方差法
    用matlab实现自适应图像阈值分割(最大类间方差法)%本程序是利用最大类间方差算法求解自适应阈值,对图像进行分割
    2020-12-01下载
    积分:1
  • simulink仿真IEEE33节点模型
    simulink搭的模型,参数全部设置好了,每个节点负载参数转换的有名值,功率60Hz
    2020-12-05下载
    积分:1
  • 合成孔径雷达图像处理
    电子工业出版社,2005.2.第1章 合成孔径雷达图像的物理基础;第2章 合成孔径雷达的原理;第3章 星载合成孔径雷达系统;第4章 合成孔径雷达图像;第5章 相干斑的模型;第6章 反射系数的估计与SAR图像滤波;第7章 SAR图像分类;第8章 点、边缘和线的检测;第9章 雷达几何与地形几何;第10章 雷达立体测量;第11章 雷达斜坡测量;第12章 雷达干涉测量;第13章 条纹的展开;第14章 雷达海洋探测;
    2020-12-12下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 29今日下载