基于粒子群遗传算法的云计算任务调度研究
对云计算任务调度进行了研究,针对用户满意度和云提供商利益需求,提出一种融合粒子群和遗传算法的PSOGA改进算法。首先根据云环境特点对虚拟机资源进行分类,同时引入任务‐资源满意度距离、资源综合性能概念;然后对粒子群初始粒子操作进行优化,来提高粒子质量;最后为克服粒子易陷入局部最优解问题,加入遗传算法(GA)的交叉、变异操作,扩展粒子的搜索空间。仿真结果表明,该调度策略提高了用户满意度的同时减少了任务的完成时间,是云平台下一种有效的任务调度策略。Computer engineering and applications[0,1]Ka By+M=85,7,4,7,41 aya+B+rBr0.10.20.7(9,1,25,7)(9,25,5,7)=(1,0,0,1,1)3 a oB∑01(1,0,1,1)④0.9(1,1,0,1)=(1xx,1)010.109(3,2,1,5,4)∞(1,0,1,1,1)=(3x,15,4)GA3.2Computer engineering and applications0.36Cloudsim 3.0CloudsimDatacenter Brokerbind cloudlettovm=0.82bind CloudlettovmMyclipse100PSOGAPSOGAK=844%Cloud[1000040000rand([150,200rand()]预处理任务及資、「5001000rand(]源,并更新虚拟机计算任务-资谅满总度距离[60100rand()ndo初始负载从可用资源随机生|根据得致的任务最PSOGA成S3/4个子佳虚拟机类型生成S/4个粒子PSOPSOGAGA初始化S个粒了的还200度,并设置最大迭代次数L和 fitness=tPSOGA很据車新定义的粒了探作,计算 fitness值,并更新pb利gb根据规则选择粒了进亻[15交叉变异探作,并计算fitness值,更新忡群(12)达到最大次效LL=L+1fitness阈值结太,得到最优解(13)M=200300200200LPSOs Lo n PsoGAPSOGAPSOGAGAComputer engineering and applications80070600s■PSO400AGA300■ PSOGA200PSOGAPSO GA100PSO GA0第一批第二批第三批PSOGAPSO GAPAOGAPSOGA2.5PSOPSOGAA0.5PSOGA第一北第二批第批PSOGAPSO GA5400190r170015001301100西GAn□1sGAGA了0050o笫一批第二批第二批43.532.5NGA□05第一枇第二批第三批Computer engineering and applications基于粒子群遗传算法的云计算任务调度研究万F据WANFANG DATA文献链接作者王菠,张晓磊作者单位:重庆人学计算机学院,重庆400044刊名:计算机工程与应用英文刊名:Com uter Engineering ar d Appl ications年,卷(期)2013Axfe:http://d.wanfangdata.concn/periodiCalpre8fb5c222-8042-4959-ba95-2a3a31f59b2e.aspx
- 2020-12-08下载
- 积分:1