10)成为可能,但需要注意的是,当n大到一定程度时,模型效果的提升幅度会变小.例如,当n从1到2,再从2到3时,模型的效果上升显著,而从3到4时,效果的提升就不显著了(具体可参考吴军在《数学之美》中的相关章节).事实上,这里还涉及到一个可靠性和可区别性的问题,参数越多,可区别性越好,但同时单个参数的实例变少从而降低了可靠性,因此需要在可靠性和可区别性之间进行折中另外,n-gran模型中还有一个叫做平滑化的重要环节.回到公式(3.3),考虑两个问题:若count(uk-n+1)=0,能否认为p(kln1-1)就等于0呢?若count(kn+)=count(uk-+1,能否认为p(uur-)就等于1呢?显然不能!但这是一个无法回避的问题,哪怕你的语料库有多么大.平滑化技术就是用来处理这个问题的,这里不展开讨论,具体可参考[11总结起来,n-gram模型是这样一种模型,其主要工作是在语料中统计各种词串岀现的次数以及平滑化处理.概率值计算好之后就存储起来,下次需要计算一个句子的概率时,只需找到相关的概率参数,将它们连乘起来就好了然而,在机器学习领域有一种通用的招数是这样的:对所考虑的问题建模后先为其构造一个目标函数,然后对这个目标函数进行优化,从而求得一组最优的参数,最后利用这组最优参数对应的模型来进行预測对于统计语言模型而言,利用最大似然,可把目标函数设为plwlConteat(w))∈C其中C表示语料(Corpus),Context(u)表示词U的上下文(Context),即周边的词的集合.当Context(u)为空时,就取p(Context(w)=p(u).特别地,对于前面介绍的n-gran模型,就有Context(mn)=2-n+1注3.1语料¢和词典仍的区别:词典仍是从语料¢中抽取岀来的,不存在重复的词;而语料C是指所有的文本內容,包括重复的词当然,实际应用中常采用最大对数似然,即把目标函数设为∑logp(u(ontext(o)(3.4)然后对这个函数进行最大化从(3.4)可见,概率p(CONtex()已被视为关于和Context()的函数,即p(wContext(w))=F(w,Conteact(w),0)-IMDN开发者社群-imdn.cn"> 10)成为可能,但需要注意的是,当n大到一定程度时,模型效果的提升幅度会变小.例如,当n从1到2,再从2到3时,模型的效果上升显著,而从3到4时,效果的提升就不显著了(具体可参考吴军在《数学之美》中的相关章节).事实上,这里还涉及到一个可靠性和可区别性的问题,参数越多,可区别性越好,但同时单个参数的实例变少从而降低了可靠性,因此需要在可靠性和可区别性之间进行折中另外,n-gran模型中还有一个叫做平滑化的重要环节.回到公式(3.3),考虑两个问题:若count(uk-n+1)=0,能否认为p(kln1-1)就等于0呢?若count(kn+)=count(uk-+1,能否认为p(uur-)就等于1呢?显然不能!但这是一个无法回避的问题,哪怕你的语料库有多么大.平滑化技术就是用来处理这个问题的,这里不展开讨论,具体可参考[11总结起来,n-gram模型是这样一种模型,其主要工作是在语料中统计各种词串岀现的次数以及平滑化处理.概率值计算好之后就存储起来,下次需要计算一个句子的概率时,只需找到相关的概率参数,将它们连乘起来就好了然而,在机器学习领域有一种通用的招数是这样的:对所考虑的问题建模后先为其构造一个目标函数,然后对这个目标函数进行优化,从而求得一组最优的参数,最后利用这组最优参数对应的模型来进行预測对于统计语言模型而言,利用最大似然,可把目标函数设为plwlConteat(w))∈C其中C表示语料(Corpus),Context(u)表示词U的上下文(Context),即周边的词的集合.当Context(u)为空时,就取p(Context(w)=p(u).特别地,对于前面介绍的n-gran模型,就有Context(mn)=2-n+1注3.1语料¢和词典仍的区别:词典仍是从语料¢中抽取岀来的,不存在重复的词;而语料C是指所有的文本內容,包括重复的词当然,实际应用中常采用最大对数似然,即把目标函数设为∑logp(u(ontext(o)(3.4)然后对这个函数进行最大化从(3.4)可见,概率p(CONtex()已被视为关于和Context()的函数,即p(wContext(w))=F(w,Conteact(w),0) - IMDN开发者社群-imdn.cn">
登录
首页 » Others » Google word2vec算法 数学原理

Google word2vec算法 数学原理

于 2020-06-14 发布
0 143
下载积分: 1 下载次数: 0

代码说明:

文档是 word2vec 算法 数学原理详解。word2vec是google的一个开源工具,能够仅仅根据输入的词的集合计算出词与词直接的距离,既然距离知道了自然也就能聚类了,而且这个工具本身就自带了聚类功能,很是强大。32预备知识本节介绍word2v中将用到的一些重要知识点,包括 sigmoid函数、 Bccs公式和Huffman编码等821 sigmoid函数sigmoid函数是神经网络中常用的激活函数之一,其定义为1+e该函数的定义域为(-∞,+∞),值域为(0,1).图1给出了 sigmoid函数的图像0.56图1 sigmoid函数的图像sigmoid函数的导函数具有以下形式(x)=0(x)1-0(x)由此易得,函数loga(x)和log(1-0(x)的导函数分别为log a(a)-1 a(a),log(1 o(a))l-a(a),(2.1)公式(2.1)在后面的推导中将用到32.2逻辑回归生活中经常会碰到二分类问题,例如,某封电子邮件是否为垃圾邮件,某个客户是否为潜在客户,某次在线交易是否存在欺诈行为,等等设{(x;)}温1为一个二分类问题的样本数据,其中x∈Rn,∈{0,1},当v=1时称相应的样本为正例当v=0时称相应的样本为负例利用 sigmoid函数,对于任意样本x=(x1,x2,…,xn),可将二分类问题的 hypothesis函数写成h(x)=o(6o+b1x1+62+…+bnxn)其中θ=(0,61,…,On)为待定参数.为了符号上简化起见,引入x0=1将x扩展为(x0,x1,x2,……,xn),且在不引起混淆的情况下仍将其记为ⅹ.于是,he可简写为取阀值T=0.5,则二分类的判别公式为ho(x)≥0.5:X)=0,ha(x)6),可分别用000001、010、011、100、101对“A,E,R,T,F,D”进行编码发送,当对方接收报文时再按照三位一分进行译码显然编码的长度取决报文中不同字符的个数.若报文中可能出现26个不同字符,则固定编码长度为5(25=32>26).然而,传送报文时总是希望总长度尽可能短.在实际应用中各个字符的出现频度或使用次数是不相同的,如A、B、C的使用颗率远远高于X、Y、Z,自然会想到设计编码时,让使用频率高的用短码,使用频率低的用长码,以优化整个报文编码为使不等长编码为前缀编码(即要求一个字符的编码不能是另一个字符编码的前缀),可用字符集中的每个字符作为叶子结点生成一棵编码二叉树,为了获得传送报文的最短长度,可将每个字符的岀现频率作为字符结点的权值赋于该结点上,显然字使用频率越小权值起小,权值越小叶子就越靠下,于是频率小编码长,频率高编码短,这样就保证了此树的最小带权路径长度,效果上就是传送报文的最短长度.因此,求传送报文的最短长度问题转化为求由字符集中的所有字符作为叶子结点,由字符出现频率作为其权值所产生的 Huffman树的问题.利用 Huffman树设计的二进制前缀编码,称为 Huffman编码,它既能满足前缀编码的条件,又能保证报文编码总长最短本文将介绍的word2ve工具中也将用到 Huffman编码,它把训练语料中的词当成叶子结点,其在语料中岀现的次数当作权值,通过构造相应的 Huffman树来对每一个词进行Huffman编码图3给岀了例2.1中六个词的 Huffman编码,其中约定(词频较大的)左孩子结点编码为1,(词频较小的)右孩子编码为0.这样一来,“我”、“喜欢”、“观看”、“巴西”、“足球”、“世界杯”这六个词的 Huffman编码分别为0,111,110,101,1001和100000欢观有巴西足球图3 Huffman编码示意图注意,到目前为止关于 Huffman树和 Huffman编码,有两个约定:(1)将权值大的结点作为左孩子结点,权值小的作为右孩子结点;(②)左孩子结点编码为1,右孩子结点编码为0.在word2vee源码中将权值较大的孩子结点编码为1,较小的孩子结点编码为θ.为亐上述约定统一起见,下文中提到的“左孩子结点”都是指权值较大的孩子结点3背景知识word2vec是用来生成词向量的工具,而词向量与语言模型有着密切的关系,为此,不妨先来了解一些语言模型方面的知识83.1统计语言模型当今的互联网迅猛发展,每天都在产生大量的文本、图片、语音和视频数据,要对这些数据进行处理并从中挖掘出有价值的信息,离不开自然语言处理( Nature Language processingNIP)技术,其中统计语言模型( Statistical language model)就是很重要的一环,它是所有NLP的基础,被广泛应用于语音识别、机器翻译、分词、词性标注和信息检索等任务例3.1在语音识别亲统中,对于给定的语音段Voie,需要找到一个使概率p(Tcrt| Voice最大的文本段Tert.利用 Bayes公式,有P(Teact Voice)p(VoiceTert)p(Text)P(Veonce其中p( Voice Teat)为声学模型,而p(Tert)为语言模型(l8])简单地说,统计语言模型是用来计算一个句子的概率的概率模型,它通常基于一个语料库来构建那什么叫做一个句子的概率呢?假设W=m1:=(n1,w2,…,tr)表示由T个词1,2,…,ur按顺序构成的一个句子,则n,U2,…,wr的联合概率p(W)=p(u1)=p(u1,u2,…,r)就是这个句子的概率.利用 Baves公式,上式可以被链式地分解为1)=p(u1)·p(u2l1)·p(vai)…p(ur1-)3.1其中的(条件)概率p(1),p(U2mn1),p(u3),…,p(urln1-1)就是语言模型的参数,若这些参数巳经全部算得,那么给定一个句子1,就可以很快地算出相应的p(1)了看起来妤像很简单,是吧?但是,具体实现起来还是有点麻烦.例如,先来看看模型参数的个数.刚才是考虑一个给定的长度为T的句子,就需要计算T个参数.不妨假设语料库对应词典D的大小(即词汇量)为N,那么,如果考虑长度为T的任意句子,理论上就有N种可能,而每种可能都要计算T个参数,总共就需要计算TN个参数.当然,这里只是简单估算,并没有考虑重复参数,但这个量级还是有蛮吓人.此外,这些概率计算好后,还得保存下来,因此,存储这些信息也需要很大的內存开销此外,这些参数如何计算呢?常见的方法有 II-gram模型、决策树、最大熵模型、最大熵马尔科夫模型、条件随杋场、神经网络等方法.本文只讨论n-gram模型和神经网络两种方法.首先来看看n-gram模型32n-gram模型考虑pko4-)(k>1)的近似计算.利用 Baves公式,有p(wr wi)P(uP(w根据大数定理,当语料库足够大时,p(k4-1)可近似地表示为P(wwi)count(wi)(3.2)count(a其中 count(u4)和 count-)分别表示词串t和v-在语料中出现的次数,可想而知,当k很大时, count(o4)和 count(4-1)的统计将会多么耗时从公式(3.1)可以看出:一个词出现的慨率与它前面的所有词都相关.如果假定一个词出现的概率只与它前面固定数目的词相关呢?这就是n-gran模型的基本思想,它作了一个n-1阶的 Markov假设,认为一个词出现的概率就只与它前面的n-1个词相关,即-1)≈p(kk-1+),于是,(3.2)就变成了p(wxJuk-)count(n+1countri(3.3以〃=2为例,就有p(uk4-1)≈count(k-1, Wk)count(Wk-1)这样一简化,不仅使得单个参数的统计变得更容易(统计时需要匹配的词串更短),也使得参数的总数变少了那么, n-gran中的参数n取多大比较合适呢?一般来说,n的选取需要同时考虑计算复杂度和模型效果两个因素表1模型参数数量与n的关系模型参数数量1( ingram)2×1052(bigram)4×10103( trigram)8×10154(4grm)16×10在计算复杂度方面,表1给出了n-gram模型中模型参数数量随着n的逐渐增大而变化的情况,其中假定词典大小N=2000(汉语的词汇量大致是这个量级).事实上,模型参数的量级是N的指数函数(O(N"),显然n不能取得太大,实际应用中最多的是采用n=3的三元模型在模型效果方面,理论上是π越大,效果越奷.现如今,互联网的海量数据以及机器性能的提升使得计算更高阶的语言模型(如n>10)成为可能,但需要注意的是,当n大到一定程度时,模型效果的提升幅度会变小.例如,当n从1到2,再从2到3时,模型的效果上升显著,而从3到4时,效果的提升就不显著了(具体可参考吴军在《数学之美》中的相关章节).事实上,这里还涉及到一个可靠性和可区别性的问题,参数越多,可区别性越好,但同时单个参数的实例变少从而降低了可靠性,因此需要在可靠性和可区别性之间进行折中另外, n-gran模型中还有一个叫做平滑化的重要环节.回到公式(3.3),考虑两个问题:若 count(uk-n+1)=0,能否认为p(kln1-1)就等于0呢?若 count(kn+)= count(uk-+1,能否认为p(uur-)就等于1呢?显然不能!但这是一个无法回避的问题,哪怕你的语料库有多么大.平滑化技术就是用来处理这个问题的,这里不展开讨论,具体可参考[11总结起来,n-gram模型是这样一种模型,其主要工作是在语料中统计各种词串岀现的次数以及平滑化处理.概率值计算好之后就存储起来,下次需要计算一个句子的概率时,只需找到相关的概率参数,将它们连乘起来就好了然而,在机器学习领域有一种通用的招数是这样的:对所考虑的问题建模后先为其构造一个目标函数,然后对这个目标函数进行优化,从而求得一组最优的参数,最后利用这组最优参数对应的模型来进行预測对于统计语言模型而言,利用最大似然,可把目标函数设为plwlConteat(w))∈C其中C表示语料( Corpus), Context(u)表示词U的上下文( Context),即周边的词的集合.当 Context(u)为空时,就取p( Context(w)=p(u).特别地,对于前面介绍的 n-gran模型,就有 Context(mn)=2-n+1注3.1语料¢和词典仍的区别:词典仍是从语料¢中抽取岀来的,不存在重复的词;而语料C是指所有的文本內容,包括重复的词当然,实际应用中常采用最大对数似然,即把目标函数设为∑ logp(u( ontext(o)(3.4)然后对这个函数进行最大化从(3.4)可见,概率p( CONtex()已被视为关于和 Context()的函数,即p(w Context(w))= F(w, Conteact(w), 0)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 相机标定时使用的标定板
    相机标定时使用的标定板,配合链接http://download.csdn.net/detail/holamirai/9275817中代码使用
    2020-12-07下载
    积分:1
  • 动态贝叶斯网络推理学习理论及应用-肖秦琨 高嵩 高晓光.pdf
    动态贝叶斯网络推理学习理论及应用;动态系统;可靠性评估;故障诊断;贝叶斯网络建模;DBN0212/642007动态贝叶斯网络推理学习理论及应用肖秦琨高嵩高晓光著所·萑宫散社北京图书在版编目(CP数据动态贝叶斯网络推理学习理论及应用/肖秦琨,高嵩,高晓光著.一北京:国防工业出版社,2007.10ISBN9787-11805323-4I.动.Ⅱ.①肖.②高.③高..Ⅲ.贝叶斯推断一研究Ⅳ.0212中国版本图书馆CIP数据核字(2007)第122784号※阍所·宫版社出版发行(北京市海淀区紫竹院南路23号邮政编码100044)京南印刷厂印刷新华书店经售开本850×1168132印张9字数233千字2007年10月第1版第1次印刷印數1-3000册定价20.00元(本书如有印装错误,我社负责调换国防书店:(010)68428422发行邮购:(010)68414474发行传真:(010)68411535发行业务:(010)68472764前言不确定性理论在人工智能、机器学习、自动控制领域已经得到越来越广泛的应用。本书以当前国际上不确定性研究领域的核心工具——动态贝叶斯网络为线索,进行了动态网络推理算法、平稳系统动态贝叶斯网络结构学习模型设计、非平稳系统动态网络变结构学习模型设计、基于概率模型进化算法的动态贝叶斯网络结构寻优算法的研究。推理算法以隐变量作为划分依据,讨论了离散、连续混合模型的推理算法,并进行了算法复杂度及应用领域的讨论;结构学习研究首先从度量体制入手,讨论了动态网络度量体制的可分解性,提出了平稳及非平稳系统网络结构学习模型,以及基于贪婪算法思想的遗传算法寻优思想;最终将推理及结构学习理论用于无人机路径规划、战场态势感知、动态数据挖掘、自主控制领域,并通过大量仿真检验。本书的研究工作得到了西安工业大学专著基金及国家自然科学基金重大研究计划(90205019)的资助。本书全面系统地介绍了动态贝叶斯网络的相关理论,重点介绍了动态网络的经典应用和国内外的新发展。全书共分9章。第1章概述了动态贝叶斯网络的产生与发展、基本操作及表达。第2章和第3章为本书的理论基础部分,首先从静态网络已经取得的理论成果及研究内容人手,由浅入深引出动态贝叶斯网络的基本概念及研究方向,确定本书将要解决的主要问题:DBN推理问题和连续变量的DBN结构学习问题。第4章在第3章基础上,详细讨论了三类动态贝叶斯网络的推理即隐变量离散、隐变量连续隐变量混合DBN推理;隐马尔科夫模型是所有离散动态网络的基础故首先介绍其表达及推理,由此派生出其他离散动态网络,并讨论了如何将复杂离散网络转化为简单HMM的方法,通过算法复杂度实验分析,明确了离散动态网络的相应属性,得出了相应结论,为合理选择DBN推理算法提供依据;在推理中,若系统参数未知或为时变系统,必然涉及参数学习,故在讨论三类网络的推理中亦涉及参数学习问题。第5章从静态网络结构度量机制入手,讨论并推导出动态贝叶斯网络结构用于网络结构度量的BC及BD度量机制;通过描述基于概率模型进化算法的构图基础,引出动态贝叶斯网络结构学习机制,即基于贝叶斯优化(BOA)的动态网络结构寻优算法,BOA算法的关键是根据优良解集学习得到动态贝叶斯网络,以及根据动态贝叶斯网络推理生成新个体,前者更为重要,按照本书提出的基于贪婪算法思想的遗传算法解决动态网络学习,然后应用动态贝叶斯网络前向模拟完成后一步。第6章在此基础上,刻画了基于BD度量体制的平稳动态系统DBN结构学习模型设计,并通过仿真验证了其有效性,针对非平稳随机系统DBN的结构学习模型,提出了一种自适应窗口法用于在线自适应学习变结构DEN结构,仿真结果可行。第7章在第4章DBN推理理论的基础上,从以往UCAV路径规划中使用的方法以及涉及的定义、术语等出发,讨论了静态路径规划、动态路进规划及空间路径规划三方面的基本问题,通过对原始 Voronoi图的改进,提出了平面改进型Voronoi图、空间改进型 Voronoi图的概念,以及平面及空间动态路径重规划区域原则等,为动态路径规划提供有力的整体构型支撑进而应用前几章理论基础,建立基于DBN的战场环境感知模型,仿真结果均表明了构图及动态决策模型的正确性。第8章在DN推理及结构学习的理论基础上,将其用于自主优化及动态数据挖掘。将BOA及基于概率模型的遗传算法的静态图形的优化机制进行推广,提出了一种动态优化的新方法,利用DBN作为t到t+1代转移网络,适时改变优化的基本条件,实时确立新的种群及优化的方向使得自主智能体在无人干预下顺利完成一系列复杂任务成为可能,将变结构DBN结构学习模型设计用于动态数据挖掘,实时确定个因素之间的关系。第9章通过两个典型的应Ⅳ用实例,将DBN推理学习理论进行融合,并用于实际模型。附录给出了与DBN结构度量相关定理、性质的证明,为读者进一步研究和学习动态贝叶斯网络提供参考。本书是作者近年来潜心学习和研究国内外不确定性算法理论、方法和应用成果的一个总结。在本书的编写过程中,得到了西安电子科技大学焦李成教授和清华大学戴琼海教授及英国BankUniversity陈大庆教授的热心指导和鼓励,新加坡南洋理工大学的王海芸博土后审阅了书稿,并提出了许多宝贵意见,特向他们表示衷心的感谢。由于涉及内容广泛及限于作者的学识水平,书中疏漏和不当之处在所难免,希望读者不吝赐教指正。作者目录第1章图模型与贝叶斯网络1.1图模型简介1.2动态贝叶斯网络…1.3动态贝叶斯网络应用研究1.3.1动态时序数据分析与挖掘157781.3.2无人机的态势感知与路径规划1.3.3.进化算法与动态贝叶斯网络混合优化………10第2章静态贝叶斯网络2.1静态贝叶斯置信网络2.2贝叶斯网络的特点与应用范围152.3贝叶斯网络的研究内容162.3.1计算复杂性162.3.2网络结构的确定问题…2.3.3已知结构的参数确定问题……182.3.4在给定结构上的概率计算…………192.3.5贝叶斯网络推理算法…19第3章动态贝叶斯网络基础283.1从静态网到动态网283.1.1概述·28Ⅵ3.1.2推导293.1.3动态贝叶斯网络表达………………313.2动态贝叶斯网络的研究内容353.2.1动态贝叶斯网络推理……………………363.2.2动态贝叶斯网络学习…39第4章动态贝叶斯网络推理…464.1隐变量离散动态网络推理……464.1.1模型数学描述464.1.2隐马尔科夫的研究内容484.1.3隐马尔科夫推理学习仿真…534.1.4隐马尔科夫其他拓扑形式…564.1.5一般离散动态网络和隐马尔科夫关系………………584.2动态贝叶斯网络推理算法性能分析604.2.1动态网络转化隐马尔科夫仿真…………614.2.2离散动态网络推理算法比较仿真…634.2.3连续动态网络推理比较仿真724.3模糊推理与隐马尔科夫结合炮火校射754.3.1概述………………………754.3.2模糊动态网络环境感知框架754.4隐变量连续动态网络推理794.4.1模型数学描述…………794.4.2卡尔曼滤波图模型推理………804.5混合隐状态动态贝叶斯网络…………834.5.1模型数学描述…834.5.2混合动态贝叶斯网络推理…864.5.3混合动态贝叶斯网络学习89第5章动态贝叶斯网络结构学习算法…………………915.1动态贝叶斯网络结构度量体制………915.1.1概述915.1.2动态网络的贝叶斯信息度量………935.1.3动态贝叶斯网络BD度量965.2动态贝叶斯网络度量分解性能分析985.3构建动态网络结构寻优算法1145.3.1基于概率模型的进化算法1155.3.2基于贝叶斯优化构造动态网络结构算法1165.3.3学习动态贝叶斯网络…1185.3.4动态臾叶斯网络推理…1275.4基于贝叶斯优化构建动态网络结构算法仿真………128第6章动态贝叶斯网络结构学习模型…1346.1平稳系统动态网络结构学习模型设计1346.1.1模型设计1356.1.2仿真试验1386.2变结构动态网络自适应结构学习模型设计………1446.2.1模糊自适应双尺度…1446.2.2动态系统非平稳程度和平稳性的测量……1516.3非平稳系统网络结构学习仿真试验153第7章基于动态贝叶斯网络的路径规划……1657.1无人机平面静态路径规划·…1657.1.1基本概念……1657.1.2基于相同威胁体的路径规划…166Ⅷ
    2021-05-06下载
    积分:1
  • (asp.net)网页打印的全套解决方案
    此实例代码包括了基于网页版的全套打印方式,尤其是调用ocx组件打印。对做相关打印的项目是很有用的了。
    2020-11-27下载
    积分:1
  • 基于MATLAB_SIMULINK系统仿真权威指南.rar
    simulink是matlab最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。simulink已成为国内外高等院校高等数学、数值分析、数字信号处理、自动控制理论以及工程应用等课程的基本教学工具。全书共分为17章,从matlab简介开始,详细介绍了simulink的基础知识、模块操作、信号操作、仿真设置、积分器使用、子系统技术、系统仿真过程、模型的调试、编写m语言s-函数及stateflow建模等内容。在本书最后还重点介绍了控制系统仿真系统、神经网络仿真系统、电力系统仿真系统的原理及其运用。《基于matlab/simulink系统仿真权威指南》按逻辑编排,自始至终用实例描
    2021-05-06下载
    积分:1
  • 无线跳频资料
    跳频资料共享,跳频原理,跳频图案,跳频方式!
    2020-12-08下载
    积分:1
  • ABB机械臂与PC通讯(socket),含RAPID和C++
    1.把rapid程序拷入ABB,且删去注释(双斜杠)即可使用(有注释)2.C++程序上把(127.0.0.1)改为示教器上IP地址3.先运行rapid程序,然后运行C++程序(有注释,参考)
    2020-03-30下载
    积分:1
  • wsn 路由协议 仿真
    wsn 路由协议 仿真泛洪路由的OPNET仿真
    2020-12-03下载
    积分:1
  • ASP.NET WebForm通用权限系统框架源码 二次开发框架 .net框架
    源码其部署 平台:VS2010+,Sql Server, ASP.NET配置更改:更改BPMS.WEBXmlConfigConfig.xml下的数据库连接字符串启动:VS IIS Express或建立IIS对应网站(主网站项目BPMS.WEB)登录:用户名/密码:admin/0000用户名/密码:System/0000
    2020-12-12下载
    积分:1
  • 基于MATLAB开发平台的继电保护仿真系统
    基于MATLAB开发平台的继电保护仿真系统基于MATLAB开发平台的继电保护仿真系统基于MATLAB开发平台的继电保护仿真系统
    2020-11-30下载
    积分:1
  • JavaWeb与数据库综合设计_宿舍管理系统源码
    JavaWeb与数据库综合设计,宿舍管理系统源码,可运行,里面包含数据库sql文件。测试环境:1、tomcat7.02、Mysql5.63、开发工具Eclipse下载以后只需要修改一下数据库连接用户名和密码,配置一下数据库就行。
    2020-12-04下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载