台湾大学机器学习基石手写笔记
代码说明:
大家好,我是Mac Jiang,今天和搭建分享的是台湾大学机器学习基石(Machine Learning Foundations)的个人笔记。个人觉得这门课是一门非常好的机器学习入门课程,值得初学者学习!这份笔记是本人一笔一划手写,扫描后上传了,也算是一个月的心血,希望我的工作能够给大家带来一些学习上的帮助。Week 1: The leaming ProblemDateP1. What is Machine Learning?m:画过观架( observation)款悍技能〔)cb→圆>skdem0过数(d枝能(s)t→DML→5m Prove:增进某种表现 Performance measurePer fornoMeasureML: an alternative rute to butt aomplacoded systems- When human connot prinn the system manually (navigating on Mars)-When human nnot define the solution esaily(speech/vgual recgnition)-When needing raBid deasions that huniang cannot do (high freguency trading?When neeling to be user-orrented in a massive sale(Consumer-targetd mopketig)dataim proved①有在其些日术Pattern RcRRMLerformance机购在完不知邮们度珠meusure的隐藏规剧料灿2.Appliaation of Machine learniO food: data Twitter data Wordsspill tell food Poisoning Cike lines of resturant properlye clothig. data: scale fiqures +client surveysskill: give good fashion recommendation to Clients3 Hosing, data, characteristic of buidings and their energy loadkill:predict energy lad of other buiding closely9 Trans potation: data: Some traffic sign images and meaningsShill= recognize troffic Sions acuratelyO Education: data. Studerts, records onizes ona math tutoring systemskilL: Predict whether a stdert can give a Comet answer to anther question⑥ ntertainment:da: ho w many users have hated some movies象社解料系子荐你统stiu Predict how a user Would rate an uNatPagc3. Com Ponent of Machine lemn输入:x∈x出:y∈Y睛数(9Mrtm)tf:y→丫〔想下的)抛规律台道数据如 raining examples:D=,,()…(xmhyes分sk:9x→y〔学到的程制的孤)辆一M→9Algur+nH( hy Pothesis Set)色色妇的成坏的Pt8,9∈H,从种中最的即9Leaming model= A and He hypothesis set4.Machine learning and other FiMachine (earring, B do值到约练于B数于的设3CMLatMn鸡:eg如 to find property that15e西不哦啥CDM)若立越西的为9R西事无大大区刷若栖与9关,PM可帮助MLArdt9g让电座有很瞰明的表视(下开)CA工)机学展现A工铝能的方法statistics(计利用瓷料爆到推龙,从数学角出发纯计晨钯机罟孑的方法第2讲: Learn to Answera人阳0 n Hypothesis set(假设集)Xxx)「y=(,许答 Wii threshold飞岁=+,讲卷Wx∠thr
下载说明:请别用迅雷下载,失败请重下,重下不扣分!