登录
首页 » Others » 配电网前推回代潮流算法

配电网前推回代潮流算法

于 2020-06-26 发布
0 206
下载积分: 1 下载次数: 9

代码说明:

本程序利用前推回代算法,可用于辐射形配电网潮流求解。附有注释,简洁易懂。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PMSM simulink电机矢量控制模型
    1.yongcitongbudianjiSVPWMshiliangkongzhifangzhen.mdl是simulink仿真文件,运行前先运行controlpara.m,否则会出错。2.RBFPID的程序已全部重写,具体请见nnrbf_it.m和dis_PID.m以及simulink文件中的NN PID模块。3.运行plot_.m文件可以画出仿真曲线。
    2020-12-04下载
    积分:1
  • stm32 按键实现短按,长按,双击,组合,hold
    利用定时器,外部中断,串口,GPIO完成的一个stm32小项目。
    2020-12-01下载
    积分:1
  • 商城购物车(开发工具:AndroidStudio)
    类似淘宝购物车,可以加减数量、输入数量,保存数量到本地。
    2020-11-27下载
    积分:1
  • 机动目标跟踪的自适应卡尔曼滤波算法实现
    机动目标跟踪的自适应卡尔曼滤波算法实现0.80.8自适应估计-无自适应估计0.40.4日0.00.00.4自适应估计懒_04无自适应估计0.8400.820406080t/0.8自适应估计0.4---无自适应估计飞画0.00.40.8802c1994-2009ChinaAcademicJournalElectronicpUblishingHouse.Allrightsreservedhttp://www.cnki.net201994-2009ChinaAcademicJournalElectronicPublishinghOuseAllrightsreservedhtto:www.cnkinet
    2020-11-28下载
    积分:1
  • 数字电子技术基础·系统方法,弗洛伊德 (Thomas L.Floyd)1
    【实例简介】压缩成两部分,这是第一部分。 《华章教育·国外电子与电气工程技术丛书:数字电子技术基础·系统方法》共有14章,涵盖了数字电子技术的主要基础知识。第1章简要介绍数字系统,第2~3章介绍与数字电子技术相关的基本概念,第4~5章介绍组合逻辑及其功能模块,第6~10章介绍锁存器、触发器、定时器、移位寄存器、计数器、可编程逻辑和存储器,第11~13章介绍数据传输、信号处理及数据处理,第14章介绍总线、网络和接口。
    2021-11-18 00:43:31下载
    积分:1
  • vasp软件应用的几个入门例子
    DFT计算软件vasp的几个入门实例,含完整输入文件,对尽快熟悉vasp软件很有帮助。
    2020-12-01下载
    积分:1
  • 6713 edma
    关于TMS320C6713芯片的EDMA程序,还是很有用的。
    2020-12-08下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • 小波阈值去噪的序,希望对小波初学者较大帮助。
    小波阈值去噪的程序,包括默认阈值去噪、全局阈值去噪、自适应阈值去噪。
    2021-05-06下载
    积分:1
  • 基于粒子群算法的最短路径设计和实现
    基于粒子群算法的最短路径设计和实现,用matlab编码实现。
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载