登录
首页 » Others » 樽海鞘优化算法,对23个测试函数进行优化

樽海鞘优化算法,对23个测试函数进行优化

于 2020-07-04 发布
0 328
下载积分: 1 下载次数: 15

代码说明:

樽海鞘优化算法一种新的群体智能算法,有23个测试函数,可以运行,附有论文。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • OptiGrating.v4.2
    OptiGrating.v4.2 是一款应用广泛的软件,模拟光波导在光栅中的应用。
    2021-05-07下载
    积分:1
  • MFC界面优化,Tab与Button两种自绘控件并存
    最终想要的界面效果如图中所示,整个对话框背景颜色可变,Tab选项卡背景颜色可变,Button的背景颜色可变。实际上Tab control包含四部分:标签、标签文字、标签文字背景、选项卡背景,四部分的颜色均可DIY。对于Button,同理。但对于两种控件,要想DIY控件背景颜色,相同点是必须开“自绘属性”,不同点是自绘的方式不同,所谓殊途同归。
    2021-05-06下载
    积分:1
  • 停机伪代码
    【实例简介】yx.gba 停机问题伪代码
    2021-08-08 00:30:56下载
    积分:1
  • FSK理论误码率误比特率计算matlab文件
    该matlab文件可以计算MFSK的理论误码率,并画出FSK的理论误比特率仿真曲线,可以直接使用
    2021-05-07下载
    积分:1
  • matlab改进人工势场法模拟机器人路径规划,避障
    在论坛上搜了一些matlab人工势场法程序,但很多都有一些问题,比如目标不可达,角度计算错误等等。在这些的基础上,我进行了改进,使得能够更好地到达目标点,减少了震荡,但是依旧会出现几次震荡,愿高手继续完善。程序可以用C写出来,做机器人路径规划或者避障的同学,该文档有很高的参考性。
    2020-06-14下载
    积分:1
  • 实时UML:开发嵌入式系统高效对象
    UML经典书籍,对嵌入式开发人员挺有用的,第二版,PDF格式
    2020-12-08下载
    积分:1
  • matlab实现图像模板匹配
    用matlab实现图像的模板匹配,简单易用,有实例。
    2020-12-04下载
    积分:1
  • RTKlib精密单点定位PPP更改后代码,支持北斗、GPS
    为初学者做RTKlib精密单点定位PPP提供一定的参考(更改后的代码),支持北斗、GPS 三频、双频以及组合PPP,误差项仍需改正
    2020-12-12下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • matlab 图像边缘检测代码
    matlab 图像边缘检测代码 用于图像处理
    2020-12-02下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 29今日下载