登录
首页 » matlab » 高斯回归过程

高斯回归过程

于 2020-05-28 发布
0 132
下载积分: 1 下载次数: 4

代码说明:

说明:  高斯过程回归,代码可以再matlab2016上顺利运行,希望对学习高斯过程的你有所帮助(Gaussian process regression, the code can be run smoothly on matlab2016, I hope to help you to learn the gaussian process)

文件列表:

高斯回归过程, 0 , 2018-10-28
高斯回归过程\gmmdata.xlsx, 12114 , 2018-10-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19, 0 , 2018-06-05
高斯回归过程\gpml-matlab-v4.1-2017-10-19\.octaverc, 8 , 2010-07-23
高斯回归过程\gpml-matlab-v4.1-2017-10-19\Copyright, 1837 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov, 0 , 2018-06-05
高斯回归过程\gpml-matlab-v4.1-2017-10-19\covFunctions.m, 7962 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\apx.m, 32983 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\apxGrid.m, 35628 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\apxSparse.m, 2915 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covADD.m, 4141 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covConst.m, 533 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covCos.m, 1642 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covDiscrete.m, 2444 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covDot.m, 4125 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covEye.m, 1506 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covFBM.m, 2480 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covGabor.m, 2950 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covGaborard.m, 862 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covGaboriso.m, 747 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covGE.m, 1186 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covLIN.m, 878 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covLINard.m, 718 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covLINiso.m, 592 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covLINone.m, 1478 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMaha.m, 8278 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMask.m, 2077 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMatern.m, 3060 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMaternard.m, 992 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMaterniso.m, 843 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covNNone.m, 2181 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covNoise.m, 808 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covOne.m, 1112 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covOU.m, 3690 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPER.m, 2744 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPERard.m, 707 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPeriodic.m, 1834 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPeriodicNoDC.m, 4121 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPERiso.m, 653 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPoly.m, 1728 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPP.m, 1920 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPPard.m, 940 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPPiso.m, 800 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPref.m, 2069 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covProd.m, 3136 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covRQ.m, 1181 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covRQard.m, 1319 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covRQiso.m, 1165 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covScale.m, 3216 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSE.m, 1056 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEard.m, 801 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEiso.m, 704 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEisoU.m, 685 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEproj.m, 674 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEvlen.m, 1229 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSM.m, 6966 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSum.m, 2619 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covULL.m, 2120 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covW.m, 4131 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covWarp.m, 1988 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covZero.m, 1116 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc, 0 , 2018-06-05
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\changelog, 257 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\checkmark.png, 198 , 2010-07-23
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoClassification.m, 4640 , 2017-11-27
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoGrid1d.m, 2642 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoGrid2d.m, 4217 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoMinimize.m, 910 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoRegression.m, 5188 , 2017-11-27
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoSparse.m, 3275 , 2016-10-18
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f0.gif, 26996 , 2016-10-19
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f1.gif, 4990 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f2.gif, 15082 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f3.gif, 13866 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f4.gif, 13141 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f5.gif, 19258 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f6.gif, 28470 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f7.gif, 31055 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f8.gif, 14698 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f9.png, 159343 , 2016-10-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\gpml_randn.m, 1109 , 2010-07-23
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\index.html, 64203 , 2017-11-27
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\manual.pdf, 519849 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\README, 20645 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\style.css, 77 , 2010-07-23
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageClassification.m, 2660 , 2013-10-16
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageCov.m, 3570 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageLik.m, 2530 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageMean.m, 2264 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usagePrior.m, 3472 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageRegression.m, 2744 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageSampling.m, 2636 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\gp.m, 10560 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf, 0 , 2018-06-05
高斯回归过程\gpml-matlab-v4.1-2017-10-19\infMethods.m, 2660 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infEP.m, 17828 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infGaussLik.m, 1839 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infGrid.m, 9908 , 2016-10-18
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infKL.m, 5854 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infLaplace.m, 5464 , 2017-11-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • luoxuanjiang
    涡格法计算机翼涡强,现目前主要写出了计算涡强部分,升阻力后续传上(Vortex lattice method the computer wing vortex strength)
    2011-07-10 19:57:33下载
    积分:1
  • fftfenxi
    对一个模拟信号进行fft变换,并求出其幅值图和相位图,对于fft初学者会有一定的用途(An analog signal fft transform, and find its magnitude and phase diagrams, for beginners there will be some use of fft)
    2011-10-18 11:01:17下载
    积分:1
  • sis
    复杂网络,复杂网络的创建,以及复杂网络的演化过程(The evolution of complex networks, creating complex networks and complex networks)
    2014-11-11 14:59:45下载
    积分:1
  • Optimal-Reconfiguration-of-Distribution
    Power distribution systems have tie and sectionalizing switches whose states determine the configuration of the network. Reconfiguration of distribution network is achieved through switching operation on switches of distribution network branches. Power companies are interested in finding the most efficient configuration for minimization of real power losses and load balancing among distribution feeders to save the energy and enhance the operation performance of distribution system. The objective of this thesis is to show that the ant colony optimization algorithm can be used successfully in the reconfiguration of electrical distribution networks to minimize the power losses of the system and to balance the loading of the feeders. This work is to provide a basis for power companies to use it in the reconfiguration of the distribution networks to reduce the operational costs and to enhance the performance of their networks.
    2014-11-29 18:10:36下载
    积分:1
  • SAX_2006_ver
    SAX比其他符号算法更简便、高效 在符号化过程中实现了减维降噪 ,保证在符号空间计算出的两个符号序列距离满足实际两个时间序列距离的下界要求 ,即不会出现漏报(SAX (Symbolic Aggregate approXimation))
    2013-12-01 00:35:21下载
    积分:1
  • PVpc
    本程序模拟日间24个时段光伏出力情况,根据三点估计法求出光伏出力和三点取值的权重(This procedure simulated photovoltaic output is 24 hours in the day, and the photovoltaic output based on three-point estimate method and the weight of three values)
    2016-06-21 18:50:38下载
    积分:1
  • Upload_Sphit-128-4
    Sphit算法针对128*128的灰度图象进行压缩处理,经典算法,可以任意改进()
    2007-10-07 10:23:40下载
    积分:1
  • ofdm
    关于ofdm的matlab程序,包含viterbi程序(On ofdm in matlab program, including procedures viterbi)
    2010-05-18 20:42:12下载
    积分:1
  • HZK32h
    Store contains 32 * 32 blackbody, including English and Japanese alphanumeric characters, special symbols(Store contains 32* 32 blackbody, including English and Japanese alphanumeric characters, special symbols)
    2014-01-16 15:21:50下载
    积分:1
  • time_frequency-analysis-paper
    时频分析方法文章,对时频分析方法进行了解析,具有一定的参考价值。(Time-frequency analysis method articles, resolution, time-frequency analysis method has certain reference value.)
    2012-12-01 17:05:25下载
    积分:1
  • 696518资源总数
  • 104432会员总数
  • 16今日下载