登录
首页 » matlab » 高斯回归过程

高斯回归过程

于 2020-05-28 发布
0 129
下载积分: 1 下载次数: 4

代码说明:

说明:  高斯过程回归,代码可以再matlab2016上顺利运行,希望对学习高斯过程的你有所帮助(Gaussian process regression, the code can be run smoothly on matlab2016, I hope to help you to learn the gaussian process)

文件列表:

高斯回归过程, 0 , 2018-10-28
高斯回归过程\gmmdata.xlsx, 12114 , 2018-10-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19, 0 , 2018-06-05
高斯回归过程\gpml-matlab-v4.1-2017-10-19\.octaverc, 8 , 2010-07-23
高斯回归过程\gpml-matlab-v4.1-2017-10-19\Copyright, 1837 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov, 0 , 2018-06-05
高斯回归过程\gpml-matlab-v4.1-2017-10-19\covFunctions.m, 7962 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\apx.m, 32983 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\apxGrid.m, 35628 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\apxSparse.m, 2915 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covADD.m, 4141 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covConst.m, 533 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covCos.m, 1642 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covDiscrete.m, 2444 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covDot.m, 4125 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covEye.m, 1506 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covFBM.m, 2480 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covGabor.m, 2950 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covGaborard.m, 862 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covGaboriso.m, 747 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covGE.m, 1186 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covLIN.m, 878 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covLINard.m, 718 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covLINiso.m, 592 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covLINone.m, 1478 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMaha.m, 8278 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMask.m, 2077 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMatern.m, 3060 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMaternard.m, 992 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covMaterniso.m, 843 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covNNone.m, 2181 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covNoise.m, 808 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covOne.m, 1112 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covOU.m, 3690 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPER.m, 2744 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPERard.m, 707 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPeriodic.m, 1834 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPeriodicNoDC.m, 4121 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPERiso.m, 653 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPoly.m, 1728 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPP.m, 1920 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPPard.m, 940 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPPiso.m, 800 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covPref.m, 2069 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covProd.m, 3136 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covRQ.m, 1181 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covRQard.m, 1319 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covRQiso.m, 1165 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covScale.m, 3216 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSE.m, 1056 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEard.m, 801 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEiso.m, 704 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEisoU.m, 685 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEproj.m, 674 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSEvlen.m, 1229 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSM.m, 6966 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covSum.m, 2619 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covULL.m, 2120 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covW.m, 4131 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covWarp.m, 1988 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\cov\covZero.m, 1116 , 2016-08-25
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc, 0 , 2018-06-05
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\changelog, 257 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\checkmark.png, 198 , 2010-07-23
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoClassification.m, 4640 , 2017-11-27
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoGrid1d.m, 2642 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoGrid2d.m, 4217 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoMinimize.m, 910 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoRegression.m, 5188 , 2017-11-27
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\demoSparse.m, 3275 , 2016-10-18
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f0.gif, 26996 , 2016-10-19
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f1.gif, 4990 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f2.gif, 15082 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f3.gif, 13866 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f4.gif, 13141 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f5.gif, 19258 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f6.gif, 28470 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f7.gif, 31055 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f8.gif, 14698 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\f9.png, 159343 , 2016-10-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\gpml_randn.m, 1109 , 2010-07-23
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\index.html, 64203 , 2017-11-27
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\manual.pdf, 519849 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\README, 20645 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\style.css, 77 , 2010-07-23
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageClassification.m, 2660 , 2013-10-16
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageCov.m, 3570 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageLik.m, 2530 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageMean.m, 2264 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usagePrior.m, 3472 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageRegression.m, 2744 , 2016-10-11
高斯回归过程\gpml-matlab-v4.1-2017-10-19\doc\usageSampling.m, 2636 , 2013-01-17
高斯回归过程\gpml-matlab-v4.1-2017-10-19\gp.m, 10560 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf, 0 , 2018-06-05
高斯回归过程\gpml-matlab-v4.1-2017-10-19\infMethods.m, 2660 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infEP.m, 17828 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infGaussLik.m, 1839 , 2017-11-28
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infGrid.m, 9908 , 2016-10-18
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infKL.m, 5854 , 2017-11-26
高斯回归过程\gpml-matlab-v4.1-2017-10-19\inf\infLaplace.m, 5464 , 2017-11-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • HMM_facerec
    基于隐马尔科夫模型的人脸识别系统,包含完整的测试程序(Hidden Markov Model based face recognition system, including a complete test program)
    2010-08-23 16:22:35下载
    积分:1
  • fdtd2
    FDTD法模拟无源区域二维TE波的传播(Mur二阶吸收边界条件)(Regional two-dimensional FDTD method simulation of passive TE wave propagation (Mur second-order absorbing boundary conditions))
    2009-09-19 10:18:48下载
    积分:1
  • position4
    关于室内定位的算法,该算法是在MATLAB环境下实现的程序。(Positioning on the interior of the algorithm, which are in the MATLAB environment realize procedure.)
    2009-02-15 12:58:23下载
    积分:1
  • MATLAB_AMB
    this is a document about Ambiguity function for the radar signals
    2010-07-22 18:53:17下载
    积分:1
  • music
    DOA估计MUSIC算法,属于子空间算法,经典的DOA估计算法(doa estimation music algorithm, belongs to the subspace algorithm, classic doa estimation algorithms)
    2012-05-29 14:02:44下载
    积分:1
  • SerialFuzzyCompensator
    Document for simulink model control
    2013-02-28 16:43:58下载
    积分:1
  • PAPER5
    改进的Householder多级维纳滤波方法.pdf(An Improved Algorithm for Householder Multi-stage Wiener Filter)
    2012-08-26 21:12:02下载
    积分:1
  • dc
    说明:   DC Defect Correction Method. X = DC(A,B) attempts to solve the system of linear equations A*X = B for X. The N-by-N coefficient matrix A must be square and the right hand side column vector B must have length This uses the defect correction method until default convergence criteria or MAXIT iterations is reached.
    2013-11-19 00:23:29下载
    积分:1
  • shili
    matlab gui, 包括了4个很好的例子: 1.具有多个坐标轴的GUI,主要学习控制哪一个坐标轴是绘图命令的对象和用编辑文本框读入输入的数。 2.列表框目录阅读器,主要学习获取路径,加载,打开文件 3.从列表框中存取工作区变量,学习把存在于基本工作区的变量名放进列表框,选择多项等 4.地址簿阅读器,这个比较综合,用得技术也比较多。包括打开,保存,修改mat文件,利用handles结构保存和重新调用共享数据。(matlab gui, including four very good example: 1. with multiple axes of GUI, the main learning control which axis is the object of drawing commands and edit the text boxes with the number of read input. 2. The list box directory reader, the main study to obtain the path, load, open the file 3. From the variable list box to access the work area, learning the basic work area exists in the variable names into the list box, select a number of other 4 . address book readers, the more integrated, more technology used. Including open, save, modify mat file, save and re-use handles structure called shared data.)
    2010-06-04 01:37:49下载
    积分:1
  • pcm2
    THIS R THE PROGRAM FOR PULSE CODE MODULATION AND DPCM WHICH R HAVING THE RESULTS FOR WHICH A INPUT SEQUENCE IS TAKEN AND A CARRIER CODE IS ADDED TO THE MESSAGE SEQU TO GET THIS MODULTION DONE
    2010-08-08 12:46:21下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载