-
Numerical_recipes_pascal_code
说明: pascal programs for the book "numerical recipes in pascal".
- 2020-03-25 02:02:30下载
- 积分:1
-
MixedVineToolbox-master
说明: 混合藤Copula工具箱
A. Onken and S. Panzeri (2016). Mixed vine copulas as joint models of
spike counts and local field potentials. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon and R. Garnett, editors, Advances in Neural
Information Processing Systems 29 (NIPS 2016), pages 1325-333.(Mixed-Vine Copula Toolbox
A. Onken and S. Panzeri (2016). Mixed vine copulas as joint models of
spike counts and local field potentials. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon and R. Garnett, editors, Advances in Neural
Information Processing Systems 29 (NIPS 2016), pages 1325-333.)
- 2020-10-03 11:03:13下载
- 积分:1
-
Spillover_updated
说明: 此代码可计算Diebold&Yilmaz 溢出指数(The Diebold-Yilmaz Spillover index can be calculated by this code.)
- 2021-03-28 11:29:11下载
- 积分:1
-
网络流量在线分析系统的设计与实现
(1)实时抓取网络数据。(2)网络协议分析与显示。(3)将网络数据包聚合成数据流,以源IP、目的IP、源端口、目的端口及协议等五元组的形式存储。(4)计算并显示固定时间间隔内网络连接(双向流)的统计量(如上行与下行的数据包数目,上行与下行的数据
- 2022-05-28 23:40:12下载
- 积分:1
-
相关系数计算
说明: python程序计算皮尔逊相关系数、最大信息系数以及灰色关联度(Pearson correlation coefficient, maximum information coefficient and grey correlation degree were calculated by Python program)
- 2020-09-19 12:57:57下载
- 积分:1
-
构造均匀设计方法
说明: method1_glp.m是好格子点法构造均匀设计,method2_pglp.m是方幂好格子点法构造均匀设计,适用于试验点较多的情况(good lattice points method to construct uniform design)
- 2020-02-23 12:04:03下载
- 积分:1
-
光电编码器
该程序完成了光电编码器的功能,有波形设计,四细分,正传加一,反转减一,有输入输出波形
- 2022-03-20 13:54:06下载
- 积分:1
-
利用R语言进行Fisher判别分析
利用R语言对多元统计数据进行判别分类,这里运用的事Fisher判别分析来进行判别分类。也可以判别数据类型是否错判是否正判。结果使用系谱图展现出来。代码编写过程是要使用循环步骤的。附件是详细的运用。
- 2022-01-26 06:38:03下载
- 积分:1
-
相空间重构
说明: 能够在MATLAB中进行相空间重构辅助时间序列分析,亲测可用(Be able to reconstruct phase space in MATLAB)
- 2020-03-06 09:31:15下载
- 积分:1
-
灰色预测模型GM(1-N)
说明: 灰色预测模型GM(1,N),可以多因素分析,可对未来数据进行预测。
程序可直接运行,可以更换数据。
预测未来数据时,只需修改T值,以及因变量数据;否则T=0即可。
例如,预测未来2个数据,T=2.
输入数据:因变量x1为400.因变量x2为50;因变量x1为450.因变量x2为90。(The grey prediction model GM (1, n) can analyze many factors and predict the future data.
The program can run directly and change data.
When predicting future data, only the T value and dependent variable data need to be modified; otherwise, t = 0.
For example, predict 2 data in the future, t = 2
Input data: the dependent variable X1 is 400, the dependent variable X2 is 50, the dependent variable X1 is 450, and the dependent variable X2 is 90.)
- 2020-01-04 21:01:43下载
- 积分:1