登录
首页 » Python » load_RNN

load_RNN

于 2020-04-12 发布
0 181
下载积分: 1 下载次数: 9

代码说明:

说明:  python 电力负荷预测,rnn版本,python环境(Python power load forecasting, RNN version, python environment)

文件列表:

load_RNN\draw_data.py, 220 , 2020-01-01
load_RNN\Figure_1.png, 262436 , 2020-01-01
load_RNN\jianmo.py, 5485 , 2020-01-01
load_RNN\log_history\2.log\events.out.tfevents.1501239969.songling-14Z970-G-AA52C, 40487138 , 2020-01-01
load_RNN\log_history\4.log\events.out.tfevents.1501239965.songling-14Z970-G-AA52C, 15118217 , 2020-01-01
load_RNN\log_history\supervisor.log\events.out.tfevents.1501241437.songling-14Z970-G-AA52C, 45075180 , 2020-01-01
load_RNN\log_history\supervisor.log\events.out.tfevents.1501244672.songling-14Z970-G-AA52C, 9007093 , 2020-01-01
load_RNN\log_history\supervisor.log\events.out.tfevents.1501244808.songling-14Z970-G-AA52C, 16140864 , 2020-01-01
load_RNN\normalize.py, 1471 , 2020-01-01
load_RNN\output\steps=1000-MAPE=0.0561.csv, 18230 , 2020-01-01
load_RNN\output\steps=1000-MAPE=0.0580.csv, 18231 , 2020-01-01
load_RNN\output\steps=1000-MAPE=0.0589.csv, 18232 , 2020-01-01
load_RNN\output\steps=10000-MAPE=0.0449.csv, 18221 , 2020-01-01
load_RNN\output\steps=10000-MAPE=0.0529, 18227 , 2020-01-01
load_RNN\output\steps=10000-MAPE=0.0542.csv, 18223 , 2020-01-01
load_RNN\output\steps=10000-MAPE=0.0555.csv, 18238 , 2020-01-01
load_RNN\output\steps=10500-MAPE=0.0462.csv, 18235 , 2020-01-01
load_RNN\output\steps=10500-MAPE=0.0566.csv, 18240 , 2020-01-01
load_RNN\output\steps=11000-MAPE=0.0465.csv, 18238 , 2020-01-01
load_RNN\output\steps=11000-MAPE=0.0564.csv, 18227 , 2020-01-01
load_RNN\output\steps=11500-MAPE=0.0502.csv, 18233 , 2020-01-01
load_RNN\output\steps=11500-MAPE=0.0550.csv, 18231 , 2020-01-01
load_RNN\output\steps=12000-MAPE=0.0495.csv, 18233 , 2020-01-01
load_RNN\output\steps=12000-MAPE=0.0535.csv, 18218 , 2020-01-01
load_RNN\output\steps=12500-MAPE=0.0514.csv, 18236 , 2020-01-01
load_RNN\output\steps=12500-MAPE=0.0578.csv, 18239 , 2020-01-01
load_RNN\output\steps=13000-MAPE=0.0531.csv, 18223 , 2020-01-01
load_RNN\output\steps=13000-MAPE=0.0557.csv, 18233 , 2020-01-01
load_RNN\output\steps=13500-MAPE=0.0519.csv, 18221 , 2020-01-01
load_RNN\output\steps=13500-MAPE=0.0594.csv, 18241 , 2020-01-01
load_RNN\output\steps=14000-MAPE=0.0529.csv, 18233 , 2020-01-01
load_RNN\output\steps=14000-MAPE=0.0587.csv, 18216 , 2020-01-01
load_RNN\output\steps=14500-MAPE=0.0538.csv, 18255 , 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0508.csv, 18225 , 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0523.csv, 18246 , 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0524.csv, 18227 , 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0530.csv, 18215 , 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0539.csv, 18233 , 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0567.csv, 18213 , 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0569.csv, 18240 , 2020-01-01
load_RNN\output\steps=15000-MAPE=0.0520.csv, 18227 , 2020-01-01
load_RNN\output\steps=15000-MAPE=0.0578.csv, 18226 , 2020-01-01
load_RNN\output\steps=15500-MAPE=0.0549.csv, 18240 , 2020-01-01
load_RNN\output\steps=15500-MAPE=0.0571.csv, 18248 , 2020-01-01
load_RNN\output\steps=16000-MAPE=0.0536.csv, 18236 , 2020-01-01
load_RNN\output\steps=16000-MAPE=0.0563.csv, 18236 , 2020-01-01
load_RNN\output\steps=16500-MAPE=0.0501.csv, 18240 , 2020-01-01
load_RNN\output\steps=16500-MAPE=0.0550.csv, 18245 , 2020-01-01
load_RNN\output\steps=17000-MAPE=0.0503.csv, 18232 , 2020-01-01
load_RNN\output\steps=17000-MAPE=0.0547.csv, 18218 , 2020-01-01
load_RNN\output\steps=17500-MAPE=0.0493.csv, 18221 , 2020-01-01
load_RNN\output\steps=17500-MAPE=0.0567.csv, 18238 , 2020-01-01
load_RNN\output\steps=18000-MAPE=0.0479.csv, 18239 , 2020-01-01
load_RNN\output\steps=18000-MAPE=0.0556.csv, 18227 , 2020-01-01
load_RNN\output\steps=18500-MAPE=0.0501.csv, 18238 , 2020-01-01
load_RNN\output\steps=18500-MAPE=0.0553.csv, 18240 , 2020-01-01
load_RNN\output\steps=19000-MAPE=0.0484.csv, 18235 , 2020-01-01
load_RNN\output\steps=19000-MAPE=0.0547.csv, 18228 , 2020-01-01
load_RNN\output\steps=19500-MAPE=0.0502.csv, 18237 , 2020-01-01
load_RNN\output\steps=19500-MAPE=0.0549.csv, 18225 , 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0463.csv, 18226 , 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0487.csv, 18229 , 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0494.csv, 18221 , 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0522.csv, 18243 , 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0534.csv, 18228 , 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0564.csv, 18232 , 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0584.csv, 18237 , 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0589.csv, 18237 , 2020-01-01
load_RNN\output\steps=20000-MAPE=0.0526.csv, 18213 , 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0490.csv, 18240 , 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0517.csv, 18232 , 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0524.csv, 18223 , 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0528.csv, 18219 , 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0557.csv, 18240 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0497.csv, 18226 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0506.csv, 18223 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0507.csv, 18224 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0522.csv, 18229 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0523.csv, 18226 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0528.csv, 18240 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0531.csv, 18232 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0541, 18234 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0541.csv, 18225 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0549.csv, 18223 , 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0593.csv, 18237 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0450.csv, 18221 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0499.csv, 18234 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0502.csv, 18240 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0504.csv, 18228 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0508.csv, 18231 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0509.csv, 18221 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0528.csv, 18230 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0533, 18237 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0550.csv, 18238 , 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0556.csv, 18217 , 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0455.csv, 18230 , 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0466.csv, 18235 , 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0496.csv, 18245 , 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0500.csv, 18229 , 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0520.csv, 18206 , 2020-01-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • CheckBox
    vb.net做的一个CheckBox控件(功能上时,但外观很华丽,与CheckBox天差地别),切换时有比较好看的动画效果,用来学习控件开发再好不过了。(A CheckBox usercontrol.)
    2012-08-13 20:48:51下载
    积分:1
  • Circle
    界面编程,通过霍夫变换检测图形中的圆。同时可以得到圆半径(Programming interface, through the Hough transform detection graphic circle.)
    2013-09-25 22:11:59下载
    积分:1
  • HTML5_login
    黑色HTML5用户登录界面模板,按注册可以弹出注册框,还可以通过back隐藏注册框,动态提交内容,建议使用js进行数据处理。白色的点为飘落的雪花,HTML5的canvas做的,最下面的那个时间是js调用接口实现,必须要联网才能显示。(Black HTML5 user login interface template, registration may register box pops up, you can also hide back registration box, dynamic submission, it is recommended to use js for data processing. White point of falling snow, HTML5 s canvas done, the bottom that time js call interface must be networked to display. )
    2016-06-19 22:15:45下载
    积分:1
  • File-Watcher
    A vb.net example to monitor the file insert in the monitor directory.
    2012-12-28 17:57:06下载
    积分:1
  • Matlab
    我完成了修图软件中的三个基本功能,人像磨皮、白平衡调节和皮肤美白。人像磨皮使用双边滤波器完成,效果良好但运行速度慢。白平衡调节使用灰度世界算法来编写程序,可以自动调节偏色照片的白平衡,运行效果良好。皮肤美白使用优化的白平衡算法来对皮肤进行提亮处理,运行效果良好。其中,磨皮力度和美白力度可以通过滑块调节,方便使用。我还为该程序设计了一个简单的界面,并切加入丰富的色彩来吸引用户使用。程序中处理的照片可以自行选择,处理后的照片也可以直接保存。(I finished retouching software three basic functions, Portrait dermabrasion, white balance adjustment, and skin whitening. Portrait microdermabrasion using bilateral filter completed with good results but runs slow. White balance adjustment to write programs using the gray world algorithm that automatically adjusts the color cast photo of white balance, running well. White skin whitening using the optimized algorithm to brighten skin treatment, running well. Among them, dermabrasion intensity and whitening efforts by the slider to adjust, easy to use. I also design for the program a simple interface and rich colors cut added to attract users. Photo processing programs can choose, after treatment photos can also be directly saved.)
    2015-09-21 17:38:45下载
    积分:1
  • MiniGUI_V3.0.12指南+用户手册+技术白皮书
    说明:  minigui开发指南,技术白皮书,用户手册,新手入门必看指导书籍(MiniGUI Development Guide)
    2020-11-26 17:17:22下载
    积分:1
  • temperature
    说明:  基于Labwindows/cvi9.0的数据采集显示界面,对随机产生的数据进行图标显示,并且显示出所采集数据中的最大值和最小值。(Data collection based on Labwindows/cvi9.0 display interface, the data on the randomly generated icon and display the data collected in the maximum and minimum values.)
    2010-04-12 21:42:17下载
    积分:1
  • GUI_programming_python_tkinter
    说明:  GUI_programming_python_tkinter
    2019-11-01 13:11:06下载
    积分:1
  • yigejiandandetuxiangchuliruanjian
    说明:  一个简单的图像处理软件 一个简单的图像处理软件(a simple image processing software a simp le image processing software)
    2020-12-27 18:39:02下载
    积分:1
  • 使用Tesseract進行OCR
    非常好用的, 使用Tesseract進行OCR
    2016-02-15下载
    积分:1
  • 696518资源总数
  • 106215会员总数
  • 5今日下载