登录
首页 » matlab » 随机森林

随机森林

于 2020-04-03 发布
0 184
下载积分: 1 下载次数: 15

代码说明:

说明:  利用matlab中随机森林工具包数据进行预测(RF toolkit data in matlab was used for prediction)

文件列表:

randomforest-matlab\RF_Class_C\classRF_predict.m, 2166 , 2020-04-03
randomforest-matlab\RF_Class_C\classRF_train.m, 14829 , 2020-04-03
randomforest-matlab\RF_Class_C\Compile_Check, 856 , 2020-04-03
randomforest-matlab\RF_Class_C\compile_linux.m, 557 , 2020-04-03
randomforest-matlab\RF_Class_C\compile_windows.m, 1589 , 2020-04-03
randomforest-matlab\RF_Class_C\data\twonorm.mat, 48856 , 2020-04-03
randomforest-matlab\RF_Class_C\data\X_twonorm.txt, 96300 , 2020-04-03
randomforest-matlab\RF_Class_C\data\Y_twonorm.txt, 600 , 2020-04-03
randomforest-matlab\RF_Class_C\Makefile, 2693 , 2020-04-03
randomforest-matlab\RF_Class_C\Makefile.windows, 2523 , 2020-04-03
randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw64, 26624 , 2020-04-03
randomforest-matlab\RF_Class_C\mexClassRF_train.mexw64, 43520 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o, 6848 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o, 9840 , 2020-04-03
randomforest-matlab\RF_Class_C\README.txt, 3128 , 2020-04-03
randomforest-matlab\RF_Class_C\rfsub.o, 9840 , 2020-04-03
randomforest-matlab\RF_Class_C\src\classRF.cpp, 33889 , 2020-04-03
randomforest-matlab\RF_Class_C\src\classTree.cpp, 8947 , 2020-04-03
randomforest-matlab\RF_Class_C\src\cokus.cpp, 7678 , 2020-04-03
randomforest-matlab\RF_Class_C\src\cokus_test.cpp, 1189 , 2020-04-03
randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp, 5225 , 2020-04-03
randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp, 8545 , 2020-04-03
randomforest-matlab\RF_Class_C\src\qsort.c, 4676 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rf.h, 5186 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rfsub.f, 15851 , 2020-04-03
randomforest-matlab\RF_Class_C\src\rfutils.cpp, 9609 , 2020-04-03
randomforest-matlab\RF_Class_C\src\twonorm_C_wrapper.cpp, 9865 , 2020-04-03
randomforest-matlab\RF_Class_C\test_ClassRF_extensively.m, 604 , 2020-04-03
randomforest-matlab\RF_Class_C\tutorial_ClassRF.m, 10403 , 2020-04-03
randomforest-matlab\RF_Class_C\twonorm_C_devcpp.dev, 1783 , 2020-04-03
randomforest-matlab\RF_Class_C\Version_History.txt, 1311 , 2020-04-03
randomforest-matlab\RF_Reg_C\Compile_Check_kcachegrind, 611 , 2020-04-03
randomforest-matlab\RF_Reg_C\Compile_Check_memcheck, 623 , 2020-04-03
randomforest-matlab\RF_Reg_C\compile_linux.m, 952 , 2020-04-03
randomforest-matlab\RF_Reg_C\compile_windows.m, 801 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\diabetes.mat, 265664 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\X_diabetes.txt, 110942 , 2020-04-03
randomforest-matlab\RF_Reg_C\data\Y_diabetes.txt, 11492 , 2020-04-03
randomforest-matlab\RF_Reg_C\diabetes_C_devc.dev, 1293 , 2020-04-03
randomforest-matlab\RF_Reg_C\Makefile, 1774 , 2020-04-03
randomforest-matlab\RF_Reg_C\README.txt, 2623 , 2020-04-03
randomforest-matlab\RF_Reg_C\regRF_predict.m, 986 , 2020-04-03
randomforest-matlab\RF_Reg_C\regRF_train.m, 12863 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\cokus.cpp, 7678 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\cokus_test.cpp, 1189 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\diabetes_C_wrapper.cpp, 11673 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\mex_regressionRF_predict.cpp, 3864 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\mex_regressionRF_train.cpp, 12391 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\qsort.c, 4676 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\reg_RF.cpp, 40291 , 2020-04-03
randomforest-matlab\RF_Reg_C\src\reg_RF.h, 560 , 2020-04-03
randomforest-matlab\RF_Reg_C\test_RegRF_extensively.m, 1364 , 2020-04-03
randomforest-matlab\RF_Reg_C\tutorial_RegRF.m, 9505 , 2020-04-03
randomforest-matlab\RF_Reg_C\Version_History.txt, 253 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win32, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub\win64, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\data, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\precompiled_rfsub, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\src, 0 , 2020-04-03
randomforest-matlab\RF_Class_C\tempbuild, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\data, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\src, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C\tempbuild, 0 , 2020-04-03
randomforest-matlab\RF_Class_C, 0 , 2020-04-03
randomforest-matlab\RF_Reg_C, 0 , 2020-04-03
randomforest-matlab, 0 , 2020-04-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Untitled
    简单的fisher分类器,可以进行简单的分类,并且有图文例程(Simple Fisher classifier)
    2020-06-19 19:20:02下载
    积分:1
  • Pro3D_exmple
    3D的激光脉冲在克尔效应下的传播,对解3维的非线性薛定谔方程有很重要的参考价值(3D NLSE)
    2011-12-29 20:15:48下载
    积分:1
  • BPSK_Rayleigh
    BPSK in Rayleigh channel
    2015-06-07 19:32:56下载
    积分:1
  • nangjan
    基于chebyshev的水声信号分析,最小均方误差(MMSE)的算法,多目标跟踪的粒子滤波器。( Based chebyshev underwater acoustic signal analysis, Minimum mean square error (MMSE) algorithm, Multi-target tracking particle filter.)
    2017-01-16 13:18:27下载
    积分:1
  • 通过Q学习算法解决房间路径规划问题
    强化学习算法,通过Q学习算法解决房间路径规划问题,matlab(Reinforcement learning algorithm and Q learning algorithm to solve the problem of room path planning, matlab)
    2020-06-21 17:40:01下载
    积分:1
  • 声发射
    对声发射数据的具体处理分析程序,一些根据具体的实验去创建的(A specific processing analysis program for acoustic emission data, which are created by specific experiments)
    2021-03-24 09:09:15下载
    积分:1
  • FastICA_2.5
    FASTICA_2.5 ,独立主成分分析(FASTICA_2.5, independent principal component analysis)
    2010-09-15 10:38:48下载
    积分:1
  • MIMLdros
    包括MATLAB的代码:MIMLSVM+和E-MIMLSVM+(MIMLdros includes the MATLAB codes of MIMLSVM+ and E-MIMLSVM+ which are MIML algorithms that have been applied to drosophila gene expression pattern annotation. The package contains a Readme file which explains how to use it.)
    2011-05-12 16:26:52下载
    积分:1
  • self105
    this file is simulink of self inverter in matlab software
    2011-10-28 12:41:51下载
    积分:1
  • accessory_parameter
    lingjian.m-----蒙特卡罗方法 lingjian.m使用零件初始值,用蒙特卡罗方法算出总费用。其中使用了自己编制的正态分布随机数发生器产生正态分布随机数。lingjian.m是对蒙特卡罗方法的一次练习。(Monte Carlo method lingjian.m----- using parts lingjian.m initial value, using the Monte Carlo method to calculate the total cost. Using its own random number produced by the normal distribution normal distribution random number generator. lingjian.m Monte Carlo method is a practice.)
    2009-05-15 15:03:01下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载