登录
首页 » matlab » Kaggle-Nomad2018-master

Kaggle-Nomad2018-master

于 2020-03-11 发布
0 132
下载积分: 1 下载次数: 4

代码说明:

说明:  毕业设计之跳频通信系统的设计与仿真。努力学习noma技术,顺利毕业。(Frequency hopping communication system)

文件列表:

Kaggle-Nomad2018-master, 0 , 2018-03-12
Kaggle-Nomad2018-master\.gitattributes, 66 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\504notebook-checkpoint.ipynb, 15146 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\DMLP-checkpoint.ipynb, 22418 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\catmodel-checkpoint.ipynb, 7097 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\cvmodel_set-checkpoint.ipynb, 4840 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\dnn_keras-checkpoint.ipynb, 11284 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\dnn_keras_f-checkpoint.ipynb, 389362 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\feature_engineer-checkpoint.ipynb, 12281 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\k_neural_feat-checkpoint.ipynb, 6241 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\lightmodel-checkpoint.ipynb, 14382 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\mean_script-checkpoint.ipynb, 5816 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\model-checkpoint.ipynb, 26510 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\model_skopt-checkpoint.ipynb, 6201 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\nomad-checkpoint.ipynb, 11207 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\stack-checkpoint.ipynb, 6008 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\.ipynb_checkpoints\xgmodel-checkpoint.ipynb, 7911 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\10kgbt.csv, 25328 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\DMLP.ipynb, 22418 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\NUTILS.py, 3369 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\__pycache__, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\__pycache__\NUTILS.cpython-36.pyc, 3735 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\best, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\best\.ipynb_checkpoints, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\best\.ipynb_checkpoints\dnn_keras_f-checkpoint.ipynb, 10527 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\best\dnn_keras_f.ipynb, 10527 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\best\k_dnn_12.csv, 14828 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\best\k_model0473_1.h5, 14687432 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\catmodel.ipynb, 7097 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\checkpoint, 95 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\corr_script.py, 1421 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\cvmodel_set.ipynb, 4840 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\EA.csv, 47 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\HOMO.csv, 37 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\IP.csv, 46 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\LUMO.csv, 40 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\electronegativity.csv, 809 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\mass.csv, 1134 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\rd_max.csv, 38 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\rp_max.csv, 37 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\elemental-properties\rs_max.csv, 30 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\test.csv, 47272 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\test_full.csv, 287184 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\test_prepared.csv, 171913 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\train.csv, 218636 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\train_full.csv, 1187383 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data\train_prepared.csv, 721471 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data_pipeline.py, 2281 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\data_scaled_1hot.csv, 493348 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\dnn_keras (1).ipynb, 1285300 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\dnn_keras.ipynb, 11284 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\dnn_keras_f.ipynb, 389362 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\.ipynb_checkpoints, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\.ipynb_checkpoints\meta_regressor-checkpoint.ipynb, 8877 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\.ipynb_checkpoints\new_bag-checkpoint.ipynb, 7029 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\.ipynb_checkpoints\new_cat-checkpoint.ipynb, 3486 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\.ipynb_checkpoints\new_knn-checkpoint.ipynb, 3195 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\.ipynb_checkpoints\new_lgbm-checkpoint.ipynb, 4624 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\.ipynb_checkpoints\new_xgb-checkpoint.ipynb, 5112 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\NUTILS.py, 3369 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\__pycache__, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\__pycache__\NUTILS.cpython-36.pyc, 3900 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\architecture, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\best, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\best\cat_2.csv, 25324 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\best\k_dnn_12.csv, 14828 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\best\sub.csv, 25366 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\best\xgb_2.csv, 25320 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\cat_models, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\cat_models\cat_band_model1, 468364 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\cat_models\cat_form_model1, 531352 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\corr_script.py, 1421 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\sample_submission.csv, 10739 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test.csv, 47272 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\.DS_Store, 6148 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\1, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\1\geometry.xyz, 5550 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\10, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\10\geometry.xyz, 5549 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\100, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\100\geometry.xyz, 1695 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\101, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\101\geometry.xyz, 5550 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\102, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\102\geometry.xyz, 1683 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\103, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\103\geometry.xyz, 5549 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\104, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\104\geometry.xyz, 2993 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\105, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\105\geometry.xyz, 2992 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\106, 0 , 2018-03-12
Kaggle-Nomad2018-master\NOMAD\ensembling\input\test\106\geometry.xyz, 2343 , 2018-03-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Matlab_Markov
    图像建模Markov随机场,希望对大家有帮助,呵呵。(images Markov modeling with the airport, and I hope to be helpful, huh.)
    2006-06-02 11:34:21下载
    积分:1
  • 2014DIPmatlabcode
    拉普拉斯滤波,用拉普拉斯算子进行的频域滤波(Laplace filter)
    2014-10-29 19:26:32下载
    积分:1
  • Wind_PMSG
    wind power systems with permanent magnet generator in matlab
    2013-09-08 15:33:21下载
    积分:1
  • matlab
    仿真信号 进行卡尔曼滤波去除噪声 并用KNN算法实现定位(Kalman filter is used to remove noise from simulated signals and KNN algorithm is used to locate them.)
    2019-03-04 16:31:46下载
    积分:1
  • digital-communication
    说明:  数字通信16QAM,16QPSK的实现思路及分析,报告详细,有误码率的分析(Digital communication 16QAM, 16QPSK implementation ideas and analysis, report details, there is the analysis of bit error rate)
    2011-03-17 12:32:05下载
    积分:1
  • psb2machines_pss
    一1000 MW水电站(机组M1)通过一条500 kV, 700 km的输电线路与负载中心连接。负载中心模型是5000 MW的阻抗负载,由遥远的1000 MW电站和当地的5000 MW (机组 M2)电站供电。系统已经初始化,因此线路传送950 MW,接近它的潮流阻抗负载(SIL = 977 MW)。这两台机相当于一台水轮机和管理(HTG),励磁系统和电力系统稳定器(PSS)。这三个模块位于“涡轮和调速”子系统中。通过此例,在500 kV系统中制造故障,观察PSS对系统稳定性的影响。(a 1,000 MW hydropower station (crew M1) through a 500 kV, 700 km of transmission line and load center. Load center model is 5,000 MW of load impedance. from the distant 1000 MW power station and the local 5,000 MW (Unit M2) power supply. Is initialized, it transmits 950 MW. closer to its trend of load impedance (SIL = 977 MW). This machine is equivalent to a two hydraulic turbines and Management (HTG), excitation system and the power system stabilizer (PSS). This module is located at 3 "and turbine speed" subsystem. Through this cases, the 500 kV system manufacturing fault, PSS observation of the system stability.)
    2020-09-09 09:58:04下载
    积分:1
  • chap1
    先进PID控制及其MATLAB仿真(刘金琨)书籍,第一章程序,学习PID算法的可以参考(Advanced PID control and MATLAB simulation (LiuJinKun) books, the first chapter, study of PID algorithm can reference)
    2013-05-22 17:47:52下载
    积分:1
  • music
    说明:  很经典的关于计算DOA的算法——music算法,也是所有计算DOA的基础算法(Classic DOA on the calculation algorithm- music algorithm, is also the basis for all calculations DOA algorithm)
    2008-10-08 16:56:25下载
    积分:1
  • uneven
    说明:  图像处理中将极坐标转换为笛卡尔左边的几个调用函数,包含bin,density 和ffgrid(in the image process,please convert the polar coordinate into castinate coordinate, there are some diaoyong functions ,include bin,density and ffgrid)
    2011-03-24 10:51:33下载
    积分:1
  • MATLABJIECHENG
    matlab学习资料,讲述了在matlab下如何计算阶乘。(matlab learning materials, about how to calculate the factorial in matlab.)
    2013-10-22 16:28:38下载
    积分:1
  • 696518资源总数
  • 104509会员总数
  • 10今日下载