登录
首页 » matlab » Data_Augmentation

Data_Augmentation

于 2020-10-21 发布
0 97
下载积分: 1 下载次数: 1

代码说明:

说明:  利用MATLAB对图像进行文件夹中图片进行批量增广(MATLAB is used to enlarge the images in the folder)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • houghline
    说明:  hough 变换提取直线 MATLAB程序 可以很好的检测出一副图像中的直线(Extraction of straight line hough transform MATLAB program can detect a very good image of a straight line)
    2008-12-07 21:52:12下载
    积分:1
  • matlab
    matlab书上第六章数值运算的几个样例习题。。。。。(the descirbtion of the matlab)
    2019-05-15 19:54:04下载
    积分:1
  • xsssdp
    基于稀疏分解的欠定盲源分离,要求信号具有一定的稀疏性。(Based on sparse decomposition due to blind source separation, the signal has a certain sparseness.)
    2013-04-22 16:41:05下载
    积分:1
  • ORB-and-FREAK-experiments-
    ORB和FREAK局部特征对比实验ORB_FREAK(ORB and FREAK local features of comparative experiments ORB_FREAK)
    2013-05-07 15:21:25下载
    积分:1
  • Tamuratexture
    图像纹理特征提取,是图像处理中一另一个非常重要的底层特征,matlab实现(Image texture feature extraction, image processing are very important to one another underlying characteristics, matlab implementation)
    2009-02-24 12:06:09下载
    积分:1
  • harris_watermark
    说明:  基于HARRIS特征点的数字水印的嵌入算法,以及数字水印的检测算法(Watermark embedding and Detection in image based on Harris features points)
    2020-09-03 18:08:08下载
    积分:1
  • imMosaic
    基于sift的图像拼接算法,使用matlab实现(Sift-based image mosaic algorithm implementation using matlab)
    2020-11-06 16:19:49下载
    积分:1
  • 3
    说明:  使用matlab实现脑磁共振图像的海马体分割(Using MATLAB to segment the hippocampus of brain MR images)
    2020-04-02 12:22:46下载
    积分:1
  • 信号检测与估计
    国内权威大家写的信号检测理论,主要讲述了信号理论和估计。(the book is literally book for signal processing,it was use for master students who want to learning signal detect and estimate)
    2017-07-13 09:52:03下载
    积分:1
  • 利用SVM或者其他机器学习算法进行分类识别 LBP
    (1)计算图像中每个像素点的LBP模式(等价模式,或者旋转不变+等价模式)。 (2)然后计算每个cell的LBP特征值直方图,然后对该直方图进行归一化处理(每个cell中,对于每个bin,h[i]/=sum,sum就是一副图像中所有等价类的个数)。 (3)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量; 然后便可利用SVM或者其他机器学习算法进行分类识别了。((1) calculate the LBP pattern of each pixel in the image (equivalent mode, or rotation invariant + equivalent mode). (2) then the LBP eigenvalue histogram of each cell is calculated, and then the histogram is normalized (for each cell, for each bin, h[i]/=sum, sum is the number of all the equivalent classes in a pair of images). (3) finally, the statistical histogram of each cell is connected into a feature vector, that is, the LBP texture feature vector of the whole picture. Then, SVM or other machine learning algorithms can be used for classification and recognition.)
    2020-07-01 20:00:02下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载