登录
首页 » matlab » yechengxi-LightNet-6ada9dd

yechengxi-LightNet-6ada9dd

于 2020-01-20 发布
0 116
下载积分: 1 下载次数: 11

代码说明:

说明:  一个matlab神经网络工具箱,其中包含RNN,CNN等(Matlab neural network toolbox)

文件列表:

yechengxi-LightNet-6ada9dd, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CIFAR_CNN_SGD.m, 674 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\Main_CNN_ImageNet_minimal.m, 1194 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\PrepareData_CIFAR_CNN.m, 413 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\getCifarImdb.m, 2122 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\net_init_cifar_cnn.m, 1849 , 2017-10-21
yechengxi-LightNet-6ada9dd\CNN\test_im.JPG, 113805 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\leaky_relu.m, 245 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\modu.m, 310 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\relu.m, 143 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\sigmoid_ln.m, 149 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\activations\tanh_ln.m, 152 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\bnorm.m, 3375 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_1d.m, 5449 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\conv_layer_2d.m, 5367 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\dropout.m, 277 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\linear_layer.m, 2436 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\lrn.m, 2430 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool.m, 3523 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\maxpool_1d.m, 2936 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\rmsnorm.m, 2099 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\layers\softmax.m, 254 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\loss\softmaxlogloss.m, 551 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\Main_Template.m, 3119 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\TrainingScript.m, 3614 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_bp.m, 5983 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\net_ff.m, 6106 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\test_net.m, 3978 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\net\train_net.m, 4654 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adagrad.m, 2055 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\adam.m, 3192 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\gradient_decorrelation.m, 3624 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\rmsprop.m, 2991 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\select_learning_rate.m, 2321 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\selective_sgd.m, 867 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd.m, 2378 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\optim\sgd2.m, 5401 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\SwitchProcessor.m, 565 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\average_gradients_in_frames.m, 942 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\error_multiclass.m, 689 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\flipall.m, 80 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\generate_output_filename.m, 947 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\im2col_ln.m, 1267 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data.m, 866 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\pad_data_1d.m, 686 , 2017-10-21
yechengxi-LightNet-6ada9dd\CoreModules\util\unroll_ln.m, 858 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\LightNet Tutorial.pptx, 1285467 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-supplementary-materials.pdf, 172375 , 2017-10-21
yechengxi-LightNet-6ada9dd\Documentations\lightnet-versatile-standalone.pdf, 373087 , 2017-10-21
yechengxi-LightNet-6ada9dd\ImageNetPreTrain.png, 312780 , 2017-10-21
yechengxi-LightNet-6ada9dd\Init.png, 51249 , 2017-10-21
yechengxi-LightNet-6ada9dd\License.txt, 736 , 2017-10-21
yechengxi-LightNet-6ada9dd\LightNet.png, 84805 , 2017-10-21
yechengxi-LightNet-6ada9dd\Log.txt, 2348 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_Dropout.m, 923 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\Main_MNIST_MLP_RMSPROP.m, 918 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\PrepareData_MNIST_MLP.m, 665 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\get_mnist.m, 1620 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist.m, 967 , 2017-10-21
yechengxi-LightNet-6ada9dd\MLP\net_init_mlp_mnist_dropout.m, 1668 , 2017-10-21
yechengxi-LightNet-6ada9dd\README.md, 5613 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\Main_Char_RNN.m, 4440 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_bp.m, 1780 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\gru_ff.m, 2349 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\PrepareData_Char_RNN.m, 561 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\dict.txt, 147 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_x.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\test_y.txt, 1118891 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_x.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lm_data\train_y.txt, 1997710 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_bp.m, 1947 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\lstm_ff.m, 2582 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_gru.m, 1228 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_lstm.m, 1351 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_qrnn.m, 1197 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\net_init_char_rnn.m, 877 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_bp.m, 1350 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\qrnn_ff.m, 1883 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_bp.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\rnn_ff.m, 2129 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\test_rnn.m, 1209 , 2017-10-21
yechengxi-LightNet-6ada9dd\RNN\train_rnn.m, 4898 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning, 0 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Cart_Pole.m, 1138 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Policy_Network.m, 4506 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\Main_Cart_Pole_Q_Network.m, 4754 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\is_valid_state.m, 273 , 2017-10-21
yechengxi-LightNet-6ada9dd\ReinforcementLearning\net_init_pole.m, 509 , 2017-10-21

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab-modeling-algorithm(2)
    本资料包含了系统的matlab建模用算法(This pack contains the system matlab modeling algorithm used)
    2013-08-03 19:45:05下载
    积分:1
  • seamCarving
    Content aware image downsampling appears in Seam Carving for Content-Aware Image Resizing
    2014-08-18 22:45:00下载
    积分:1
  • binary-tree-collision-code
    射频识别技术里的二进制树碰撞代码,防碰撞能力(Radio frequency identification technology in the binary tree collision code, anti-collision)
    2013-04-22 19:23:22下载
    积分:1
  • 12
    说明:  a common use of fourier transforms is to find the frequency components
    2012-11-23 02:39:25下载
    积分:1
  • lms_perfect
    用LMS算法迭代求最佳权值,程序简单效率高(Iterative optimal weights using the LMS algorithm)
    2012-06-24 21:29:29下载
    积分:1
  • fuzzy
    自然频率越高的情况下,对传统的部分影响越高,经过模糊处理却不受影响,但是自然频率调整的越高时,阻尼比反而要降低,这样模糊处理过的状态才不会受到影响,由此可见,自然频率与阻尼比在模糊控制中有相对的关系。(The relative relationship between the natural frequency and damping ratio in Fuzzy Control)
    2014-11-10 11:33:29下载
    积分:1
  • siso_rayleigh_rician
    comparison of Rayleigh fading channel with and without correlation
    2015-02-05 02:22:26下载
    积分:1
  • matlab-image-processing-assembly
    matlab图像处理程序集,经过整理的matlab源代码,基本上包含matlab图像处理的所有代码(matlab image processing assembly, after finishing the matlab source code, which basically consists of all of the code image processing matlab)
    2011-05-05 16:41:01下载
    积分:1
  • 3_rectifier
    three phase model of rectifier. make few changes as per requirement
    2015-04-11 02:08:56下载
    积分:1
  • qpsk_0421_4.mdl
    转载leiqui的内容,QPSK仿真内容,附件模型是根据书上的原理图进行组织,每一模块都呈现。例如I/Q分路,调制,解调,判决等。 (Reproduced leiqui content, QPSK simulation content, attachment model is based on the book is organized on the diagram, each module are presented. Such as I/Q splitter, modulation, demodulation, judgments.)
    2010-07-05 16:24:40下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载