登录
首页 » matlab » Time-series-Forecasting-

Time-series-Forecasting-

于 2020-11-23 发布
0 35
下载积分: 1 下载次数: 5

代码说明:

说明:  通过人工神经网络与自回归滑动平均模型的结合来进行预测,将历史时间序列作为输入,下一时刻的预测值作为输出(By combining the artificial neural network with the autoregressive moving average model, the historical time series is taken as the input and the prediction value of the next time is taken as the output)

文件列表:

Time-series-Forecasting-\.git, 0 , 2019-12-18
Time-series-Forecasting-\.git\config, 302 , 2019-12-18
Time-series-Forecasting-\.git\description, 73 , 2019-12-18
Time-series-Forecasting-\.git\HEAD, 23 , 2019-12-18
Time-series-Forecasting-\.git\hooks, 0 , 2019-12-18
Time-series-Forecasting-\.git\hooks\applypatch-msg.sample, 478 , 2019-12-18
Time-series-Forecasting-\.git\hooks\commit-msg.sample, 896 , 2019-12-18
Time-series-Forecasting-\.git\hooks\fsmonitor-watchman.sample, 3327 , 2019-12-18
Time-series-Forecasting-\.git\hooks\post-update.sample, 189 , 2019-12-18
Time-series-Forecasting-\.git\hooks\pre-applypatch.sample, 424 , 2019-12-18
Time-series-Forecasting-\.git\hooks\pre-commit.sample, 1638 , 2019-12-18
Time-series-Forecasting-\.git\hooks\prepare-commit-msg.sample, 1492 , 2019-12-18
Time-series-Forecasting-\.git\hooks\pre-push.sample, 1348 , 2019-12-18
Time-series-Forecasting-\.git\hooks\pre-rebase.sample, 4898 , 2019-12-18
Time-series-Forecasting-\.git\hooks\pre-receive.sample, 544 , 2019-12-18
Time-series-Forecasting-\.git\hooks\update.sample, 3610 , 2019-12-18
Time-series-Forecasting-\.git\index, 33058 , 2019-12-18
Time-series-Forecasting-\.git\info, 0 , 2019-12-18
Time-series-Forecasting-\.git\info\exclude, 240 , 2019-12-18
Time-series-Forecasting-\.git\logs, 0 , 2019-12-18
Time-series-Forecasting-\.git\logs\HEAD, 197 , 2019-12-18
Time-series-Forecasting-\.git\logs\refs, 0 , 2019-12-18
Time-series-Forecasting-\.git\logs\refs\heads, 0 , 2019-12-18
Time-series-Forecasting-\.git\logs\refs\heads\master, 197 , 2019-12-18
Time-series-Forecasting-\.git\logs\refs\remotes, 0 , 2019-12-18
Time-series-Forecasting-\.git\logs\refs\remotes\origin, 0 , 2019-12-18
Time-series-Forecasting-\.git\logs\refs\remotes\origin\HEAD, 197 , 2019-12-18
Time-series-Forecasting-\.git\objects, 0 , 2019-12-18
Time-series-Forecasting-\.git\objects\info, 0 , 2019-12-18
Time-series-Forecasting-\.git\objects\pack, 0 , 2019-12-18
Time-series-Forecasting-\.git\objects\pack\pack-b40e097cbdbbcc28e7c3c66cb42a3eebfb1ebccf.idx, 11544 , 2019-12-18
Time-series-Forecasting-\.git\objects\pack\pack-b40e097cbdbbcc28e7c3c66cb42a3eebfb1ebccf.pack, 4970709 , 2019-12-18
Time-series-Forecasting-\.git\packed-refs, 114 , 2019-12-18
Time-series-Forecasting-\.git\refs, 0 , 2019-12-18
Time-series-Forecasting-\.git\refs\heads, 0 , 2019-12-18
Time-series-Forecasting-\.git\refs\heads\master, 41 , 2019-12-18
Time-series-Forecasting-\.git\refs\remotes, 0 , 2019-12-18
Time-series-Forecasting-\.git\refs\remotes\origin, 0 , 2019-12-18
Time-series-Forecasting-\.git\refs\remotes\origin\HEAD, 32 , 2019-12-18
Time-series-Forecasting-\.git\refs\tags, 0 , 2019-12-18
Time-series-Forecasting-\Arima.pptx, 330242 , 2019-12-18
Time-series-Forecasting-\Autocorrelation.m, 447 , 2019-12-18
Time-series-Forecasting-\calc_residual.m, 517 , 2019-12-18
Time-series-Forecasting-\check.m, 3337 , 2019-12-18
Time-series-Forecasting-\file.txt, 2006 , 2019-12-18
Time-series-Forecasting-\file1.txt, 9629 , 2019-12-18
Time-series-Forecasting-\FRASER.1, 9676 , 2019-12-18
Time-series-Forecasting-\frasher River.txt, 2044 , 2019-12-18
Time-series-Forecasting-\input, 0 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL, 0 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\AMAZON.2, 597 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\BIRTHS.1, 476 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\BWATER.1, 656 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\CANFIRE.1, 691 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\CIG.3, 1584 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\CORN.2, 613 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\DAL.1, 820 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\DANUBE.1, 1312 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\DVI.1, 3936 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\ELECUS.1, 565 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\FORTALEZ.1, 1430 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\FRNCHA.1, 1230 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\FRNCHB.1, 820 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\GEODUCK.1, 1005 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\GLOBTP.1, 1235 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\GOTA.1, 1593 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\HURON.1, 1347 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\KIEWA.1, 820 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\MCKEN.1, 959 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\MINIMUM.1, 9028 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\MSTOUIS.1, 1033 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\NEUMUNAS.1, 1476 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\NILE.1, 1148 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\NILE2.1, 1375 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\NILEJJ.1, 1568 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\NYWATER.1, 738 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\OGDEN.1, 820 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\PEAS.1, 5330 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\PGREATL.1, 1019 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\README, 7440 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\RHINE.1, 1640 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\SPIRITS.3, 2140 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\SUNSPOTS.1, 2452 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\SUNSPT.1, 2454 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\THAMES.1, 820 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\TPYR.1, 3034 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\USM1.1, 4040 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\USM2.1, 4042 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\USM3.1, 4038 , 2019-12-18
Time-series-Forecasting-\input\ANNUAL\WHEAT.1, 2254 , 2019-12-18
Time-series-Forecasting-\input\ASKEW, 0 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW.1, 3690 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW10.1, 8282 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW11.1, 6806 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW12.1, 6314 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW13.1, 5166 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW14.1, 8118 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW15.1, 5986 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW16.1, 7790 , 2019-12-18
Time-series-Forecasting-\input\ASKEW\ASKEW17.1, 5330 , 2019-12-18

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 696518资源总数
  • 104321会员总数
  • 14今日下载