登录
首页 » matlab » MFOA

MFOA

于 2020-06-16 发布
0 439
下载积分: 1 下载次数: 10

代码说明:

说明:  基于CEC——2017benchmark测试集,计算最优 修正的果蝇算法,弥补原始果蝇算法在负数集上的缺失(modify fruit fly optimization)

文件列表:

cec17_func.cpp, 41819 , 2019-01-17
cec17_func.mexw64, 51712 , 2017-06-29
input_data, 0 , 2019-01-17
input_data\M_10_D10.txt, 2520 , 2016-09-04
input_data\M_10_D100.txt, 250200 , 2016-09-04
input_data\M_10_D2.txt, 104 , 2016-09-04
input_data\M_10_D20.txt, 10040 , 2016-09-04
input_data\M_10_D30.txt, 22560 , 2016-09-04
input_data\M_10_D50.txt, 62600 , 2016-09-04
input_data\M_11_D10.txt, 2520 , 2016-09-04
input_data\M_11_D100.txt, 250200 , 2016-09-04
input_data\M_11_D30.txt, 22560 , 2016-09-04
input_data\M_11_D50.txt, 62600 , 2016-09-04
input_data\M_12_D10.txt, 2520 , 2016-09-04
input_data\M_12_D100.txt, 250200 , 2016-09-04
input_data\M_12_D30.txt, 22560 , 2016-09-04
input_data\M_12_D50.txt, 62600 , 2016-09-04
input_data\M_13_D10.txt, 2520 , 2016-09-04
input_data\M_13_D100.txt, 250200 , 2016-09-04
input_data\M_13_D30.txt, 22560 , 2016-09-04
input_data\M_13_D50.txt, 62600 , 2016-09-04
input_data\M_14_D10.txt, 2520 , 2016-09-04
input_data\M_14_D100.txt, 250200 , 2016-09-04
input_data\M_14_D30.txt, 22560 , 2016-09-04
input_data\M_14_D50.txt, 62600 , 2016-09-04
input_data\M_15_D10.txt, 2520 , 2016-09-04
input_data\M_15_D100.txt, 250200 , 2016-09-04
input_data\M_15_D30.txt, 22560 , 2016-09-04
input_data\M_15_D50.txt, 62600 , 2016-09-04
input_data\M_16_D10.txt, 2520 , 2016-09-04
input_data\M_16_D100.txt, 250200 , 2016-09-04
input_data\M_16_D30.txt, 22560 , 2016-09-04
input_data\M_16_D50.txt, 62600 , 2016-09-04
input_data\M_17_D10.txt, 2520 , 2016-09-04
input_data\M_17_D100.txt, 250200 , 2016-09-04
input_data\M_17_D30.txt, 22560 , 2016-09-04
input_data\M_17_D50.txt, 62600 , 2016-09-04
input_data\M_18_D10.txt, 2520 , 2016-09-04
input_data\M_18_D100.txt, 250200 , 2016-09-04
input_data\M_18_D30.txt, 22560 , 2016-09-04
input_data\M_18_D50.txt, 62600 , 2016-09-04
input_data\M_19_D10.txt, 2520 , 2016-09-04
input_data\M_19_D100.txt, 250200 , 2016-09-04
input_data\M_19_D30.txt, 22560 , 2016-09-04
input_data\M_19_D50.txt, 62600 , 2016-09-04
input_data\M_1_D10.txt, 2520 , 2016-09-04
input_data\M_1_D100.txt, 250200 , 2016-09-04
input_data\M_1_D2.txt, 104 , 2016-09-04
input_data\M_1_D20.txt, 10040 , 2016-09-04
input_data\M_1_D30.txt, 22560 , 2016-09-04
input_data\M_1_D50.txt, 62600 , 2016-09-04
input_data\M_20_D10.txt, 2520 , 2016-09-04
input_data\M_20_D100.txt, 250200 , 2016-09-09
input_data\M_20_D20.txt, 10040 , 2016-09-04
input_data\M_20_D30.txt, 22560 , 2016-09-04
input_data\M_20_D50.txt, 62600 , 2016-09-04
input_data\M_21_D10.txt, 25200 , 2016-09-04
input_data\M_21_D100.txt, 2502000 , 2016-09-04
input_data\M_21_D2.txt, 832 , 2016-09-04
input_data\M_21_D20.txt, 100400 , 2016-09-04
input_data\M_21_D30.txt, 225600 , 2016-09-04
input_data\M_21_D50.txt, 626000 , 2016-09-04
input_data\M_22_D10.txt, 25200 , 2016-09-04
input_data\M_22_D100.txt, 2502000 , 2016-09-04
input_data\M_22_D2.txt, 832 , 2016-09-04
input_data\M_22_D20.txt, 100400 , 2016-09-04
input_data\M_22_D30.txt, 225600 , 2016-09-04
input_data\M_22_D50.txt, 626000 , 2016-09-04
input_data\M_23_D10.txt, 25200 , 2016-09-04
input_data\M_23_D100.txt, 2502000 , 2016-09-04
input_data\M_23_D2.txt, 832 , 2016-09-04
input_data\M_23_D20.txt, 100400 , 2016-09-04
input_data\M_23_D30.txt, 225600 , 2016-09-04
input_data\M_23_D50.txt, 626000 , 2016-09-04
input_data\M_24_D10.txt, 25200 , 2016-09-04
input_data\M_24_D100.txt, 2502000 , 2016-09-04
input_data\M_24_D2.txt, 832 , 2016-09-04
input_data\M_24_D20.txt, 100400 , 2016-09-04
input_data\M_24_D30.txt, 225600 , 2016-09-04
input_data\M_24_D50.txt, 626000 , 2016-09-04
input_data\M_25_D10.txt, 25200 , 2016-09-04
input_data\M_25_D100.txt, 2502000 , 2016-09-04
input_data\M_25_D2.txt, 832 , 2016-09-04
input_data\M_25_D20.txt, 100400 , 2016-09-04
input_data\M_25_D30.txt, 225600 , 2016-09-04
input_data\M_25_D50.txt, 626000 , 2016-09-04
input_data\M_26_D10.txt, 25200 , 2016-09-04
input_data\M_26_D100.txt, 2502000 , 2016-09-04
input_data\M_26_D2.txt, 832 , 2016-09-04
input_data\M_26_D20.txt, 100400 , 2016-09-04
input_data\M_26_D30.txt, 225600 , 2016-09-04
input_data\M_26_D50.txt, 626000 , 2016-09-04
input_data\M_27_D10.txt, 25200 , 2016-09-04
input_data\M_27_D100.txt, 2502000 , 2016-09-04
input_data\M_27_D2.txt, 832 , 2016-09-04
input_data\M_27_D20.txt, 100400 , 2016-09-04
input_data\M_27_D30.txt, 225600 , 2016-09-04
input_data\M_27_D50.txt, 626000 , 2016-09-04
input_data\M_28_D10.txt, 25200 , 2016-09-04
input_data\M_28_D100.txt, 2502000 , 2016-09-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • myAntBp
    采用蚁群算法对BP神经网络进行优化,并结合实例进行应用验证。(The ant colony algorithm is used to optimize the BP neural network, and an example is used to validate it.)
    2020-10-28 13:19:58下载
    积分:1
  • 的蚁群
    在蚁群算法的基础上进行改进,使优化效果更加明显(On the basis of ant colony algorithm, the optimization effect is more obvious.)
    2019-03-27 21:11:48下载
    积分:1
  • wfgextendProblems
    说明:  一个实现多目标进化计算的数据集,用来测试不同的真实pareto前沿(A data set for multi-objective evolutionary computation to test different real Pareto Frontiers)
    2020-06-17 22:00:01下载
    积分:1
  • matlab实现人工蜂群优(ABC)
    说明:  matlab实现人工蜂群优化(ABC)算法,用于最优化计算(MATLAB realizes artificial bee colony optimization (ABC) algorithm for optimization calculation)
    2020-11-20 10:29:38下载
    积分:1
  • FPA
    基于变异策略的改进型花朵授粉算法,里边集成了粒子群算法、蝙蝠算法以及定向变异策略,进行对比(An improved flower pollination algorithm based on mutation strategy, which integrates particle swarm optimization, bat algorithm and directional mutation strategy, is compared.)
    2020-11-18 16:09:38下载
    积分:1
  • matlab实现levy概率分布
    说明:  用matlab实现levy概率分布,并作图,用于进化算法中调整步长(Using MATLAB to realize levy probability distribution and make a map for adjusting step size in evolutionary algorithm)
    2021-04-07 18:09:01下载
    积分:1
  • GALQR
    基于遗传算法的LQR控制器优化设计,二自由度振动系统(Optimal design of LQR controller based on genetic algorithm and two degree of freedom vibration system)
    2018-05-13 20:24:33下载
    积分:1
  • 灰狼重油建模程序
    改进的灰狼算法用于重油热解模型的建模程序(greywolf algorithm for observation of heavy oil thermal cracking)
    2021-01-21 19:18:40下载
    积分:1
  • top2 of CEC2017
    说明:  CEC2017前2名的MATLAB算法实现 有EBOwithCMAR和jSO 各种参数都可以调整,包括种群数量、F因子、变异率、交叉率等(The realization of MATLAB algorithm for the top2 of cec217. There are ebowithcmar; JSO Various parameters can be adjusted, including population number, F factor, mutation rate, crossover rate, etc.)
    2020-05-07 16:29:30下载
    积分:1
  • 混沌tent映射tent分叉程序
    说明:  构建基于改进灰狼优化算法的神经网络数据预测模型(IGWO-BPNN),目的在于用改进的灰狼优化算法优化神经网络模型,利用神经网络的反向传播优势,改善神经网络算法易于陷入局部最小值的缺陷,提高神经网络模型的预测精度。(The grey wolf algorithm (GWO), which is inspired by the predatory behavior of the gray wolf group, is a new group intelligent optimization algorithm that imitates the leadership of gray wolf population and hunting mechanism in nature)
    2020-11-06 21:39:49下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载