-
cyclostationary_toolbox
循环谱工具箱,包括二阶循环累积量,循环谱估计的FAM算法(Cyclic spectrum toolbox, including the second order cyclic cumulant, FAM algorithm for spectral estimation cycle)
- 2020-10-10 00:17:34下载
- 积分:1
-
PID-matlab
《先进PID控制MATLAB仿真第3版》所有章节程序代码 (The advanced PID control and MATLAB simulation 3 All chapters program code)
- 2013-08-27 20:26:03下载
- 积分:1
-
Buck
power electronic-Buck-forward converter-this is a Psim file
- 2014-10-31 20:01:24下载
- 积分:1
-
panSharpining
pan sharpening with matlab
- 2011-12-06 17:38:32下载
- 积分:1
-
trans
Trans. Funcion de transferencia. Filtro pasa bajas. MATLAB. Trans. Funcion de transferencia. Filtro pasa bajas. MATLAB. Trans. Funcion de transferencia. Filtro pasa bajas. MATLAB. Trans. Funcion de transferencia. Filtro pasa bajas. MATLAB.
- 2013-12-12 04:50:07下载
- 积分:1
-
TVAR_Lib
是一个时变AR(Time Varying Autoregressive)模型的工具箱。(It is a toolbox for model of Time-Varying Autoregressive.)
- 2020-10-20 20:57:24下载
- 积分:1
-
pll_base_second
一个自己编写的matlab程序,仅供大家学习参考(PLL I have written an example, we learn for reference purposes only)
- 2010-06-07 17:59:28下载
- 积分:1
-
Detailed-matlab--simulink
详解matlab/simulink通信系统建模与仿真的教案(Detailed matlab/simulink communications system modeling and simulation lesson plans)
- 2013-10-14 09:29:07下载
- 积分:1
-
gamma
Gamma滤波算法,是比较简单直白的滤波算法,适合初学,可以自己做修改(Gamma filtering algorithm is relatively straightforward filtering algorithm, suitable for beginners, you can make changes to their own)
- 2013-12-04 10:58:31下载
- 积分:1
-
KNN
K最邻近密度估计技术是一种分类方法,不是聚类方法。
不是最优方法,实践中比较流行。
通俗但不一定易懂的规则是:
1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。
2.选出最小的前K数据个距离,这里用到选择排序法。
3.对比这前K个距离,找出K个数据中包含最多的是那个类的数据,即为待分类数据所在的类。(K nearest neighbor density estimation is a classification method, not a clustering method.
It is not the best method, but it is popular in practice.
Popular but not necessarily understandable rule is:
1. calculate the distance between the data to be classified and the data in each other (Euclidean or Markov).
2. select the minimum distance from the previous K data, where the choice sorting method is used.
3. compare the previous K distances to find out which K data contains the most data of that class, that is, the class to which the data to be classified is located.)
- 2020-10-23 14:37:22下载
- 积分:1