登录
首页 » matlab » fading_channel

fading_channel

于 2009-04-05 发布 文件大小:19KB
0 181
下载积分: 1 下载次数: 5

代码说明:

  衰落信道的仿真.可以运行,里面有很多,很不错(fading channel)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • cyclostationary_toolbox
    循环谱工具箱,包括二阶循环累积量,循环谱估计的FAM算法(Cyclic spectrum toolbox, including the second order cyclic cumulant, FAM algorithm for spectral estimation cycle)
    2020-10-10 00:17:34下载
    积分:1
  • PID-matlab
    《先进PID控制MATLAB仿真第3版》所有章节程序代码 (The advanced PID control and MATLAB simulation 3 All chapters program code)
    2013-08-27 20:26:03下载
    积分:1
  • Buck
    power electronic-Buck-forward converter-this is a Psim file
    2014-10-31 20:01:24下载
    积分:1
  • panSharpining
    pan sharpening with matlab
    2011-12-06 17:38:32下载
    积分:1
  • trans
    Trans. Funcion de transferencia. Filtro pasa bajas. MATLAB. Trans. Funcion de transferencia. Filtro pasa bajas. MATLAB. Trans. Funcion de transferencia. Filtro pasa bajas. MATLAB. Trans. Funcion de transferencia. Filtro pasa bajas. MATLAB.
    2013-12-12 04:50:07下载
    积分:1
  • TVAR_Lib
    是一个时变AR(Time Varying Autoregressive)模型的工具箱。(It is a toolbox for model of Time-Varying Autoregressive.)
    2020-10-20 20:57:24下载
    积分:1
  • pll_base_second
    一个自己编写的matlab程序,仅供大家学习参考(PLL I have written an example, we learn for reference purposes only)
    2010-06-07 17:59:28下载
    积分:1
  • Detailed-matlab--simulink
    详解matlab/simulink通信系统建模与仿真的教案(Detailed matlab/simulink communications system modeling and simulation lesson plans)
    2013-10-14 09:29:07下载
    积分:1
  • gamma
    Gamma滤波算法,是比较简单直白的滤波算法,适合初学,可以自己做修改(Gamma filtering algorithm is relatively straightforward filtering algorithm, suitable for beginners, you can make changes to their own)
    2013-12-04 10:58:31下载
    积分:1
  • KNN
    K最邻近密度估计技术是一种分类方法,不是聚类方法。 不是最优方法,实践中比较流行。 通俗但不一定易懂的规则是: 1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。 2.选出最小的前K数据个距离,这里用到选择排序法。 3.对比这前K个距离,找出K个数据中包含最多的是那个类的数据,即为待分类数据所在的类。(K nearest neighbor density estimation is a classification method, not a clustering method. It is not the best method, but it is popular in practice. Popular but not necessarily understandable rule is: 1. calculate the distance between the data to be classified and the data in each other (Euclidean or Markov). 2. select the minimum distance from the previous K data, where the choice sorting method is used. 3. compare the previous K distances to find out which K data contains the most data of that class, that is, the class to which the data to be classified is located.)
    2020-10-23 14:37:22下载
    积分:1
  • 696518资源总数
  • 104670会员总数
  • 38今日下载