gradient descent
代码说明:
说明: 梯度下降法是一個一階最佳化算法,通常也稱為最速下降法。 要使用梯度下降法找到一個函數的局部極小值,必須向函數上當前點對應梯度(或者是近似梯度)的反方向的規定步長距離點進行疊代搜索。如果相反地向梯度正方向疊代進行搜索,則會接近函數的局部極大值點;這個過程則被稱為梯度上升法。(The gradient descent method is a first-order optimization algorithm, also commonly referred to as the steepest descent method. To find the local minimum of a function using the gradient descent method, an iterative search must be performed to the specified step distance point in the opposite direction of the gradient (or approximate gradient) of the current point on the function. If the search is reversed in the opposite direction to the positive direction of the gradient, it will approach the local maximum point of the function; this process is called the gradient ascent method.)
文件列表:
grad_descent.m, 2474 , 2019-02-12
梯度下降法.docx, 392595 , 2019-02-21
下载说明:请别用迅雷下载,失败请重下,重下不扣分!