登录
首页 » matlab » GAN-Base-on-Matlab-master

GAN-Base-on-Matlab-master

于 2019-01-09 发布
0 188
下载积分: 1 下载次数: 21

代码说明:

说明:  生成手写数字图片,一共提供了三种算法,example_1和example_2训练GAN来生成手写数字图片,搭建了一个简单的GAN的网络结构,example_3难度较大(There are three algorithms to generate handwritten digital pictures. Example_1 and example_2 train GAN to generate handwritten digital pictures, and build a simple network structure of GAN. Example_3 is more difficult.)

文件列表:

GAN-Base-on-Matlab-master, 0 , 2018-12-12
GAN-Base-on-Matlab-master\.gitignore, 5 , 2018-12-12
GAN-Base-on-Matlab-master\LICENSE, 1350 , 2018-12-12
GAN-Base-on-Matlab-master\README.md, 2762 , 2018-12-12
GAN-Base-on-Matlab-master\activation, 0 , 2018-12-12
GAN-Base-on-Matlab-master\activation\activate_z.m, 472 , 2018-12-12
GAN-Base-on-Matlab-master\activation\delta_activation_function.m, 559 , 2018-12-12
GAN-Base-on-Matlab-master\activation\delta_leaky_relu.m, 157 , 2018-12-12
GAN-Base-on-Matlab-master\activation\delta_relu.m, 144 , 2018-12-12
GAN-Base-on-Matlab-master\activation\delta_sigmoid.m, 213 , 2018-12-12
GAN-Base-on-Matlab-master\activation\delta_tanh.m, 67 , 2018-12-12
GAN-Base-on-Matlab-master\activation\leaky_relu.m, 169 , 2018-12-12
GAN-Base-on-Matlab-master\activation\relu.m, 83 , 2018-12-12
GAN-Base-on-Matlab-master\activation\sigmoid.m, 60 , 2018-12-12
GAN-Base-on-Matlab-master\error_term, 0 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\delta_sigmoid_cross_entropy.m, 694 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\get_error_term_from_atrous_conv2d_layer.m, 554 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\get_error_term_from_batch_norm_layer.m, 1441 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\get_error_term_from_conv2d_layer.m, 554 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\get_error_term_from_conv2d_transpose_layer.m, 1936 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\get_error_term_from_fully_connect_layer.m, 121 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\get_error_term_from_reshape_layer.m, 137 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\get_error_term_from_sub_sampling_layer.m, 374 , 2018-12-12
GAN-Base-on-Matlab-master\error_term\sigmoid_cross_entropy.m, 284 , 2018-12-12
GAN-Base-on-Matlab-master\example_1.m, 1582 , 2018-12-12
GAN-Base-on-Matlab-master\example_2.m, 1144 , 2018-12-12
GAN-Base-on-Matlab-master\example_3.m, 1277 , 2018-12-12
GAN-Base-on-Matlab-master\gan_train.m, 2922 , 2018-12-12
GAN-Base-on-Matlab-master\gradient, 0 , 2018-12-12
GAN-Base-on-Matlab-master\gradient\calculate_gradient_for_atrous_conv2d_layer.m, 773 , 2018-12-12
GAN-Base-on-Matlab-master\gradient\calculate_gradient_for_batch_norm_layer.m, 731 , 2018-12-12
GAN-Base-on-Matlab-master\gradient\calculate_gradient_for_conv2d_layer.m, 739 , 2018-12-12
GAN-Base-on-Matlab-master\gradient\calculate_gradient_for_conv2d_transpose_layer.m, 1260 , 2018-12-12
GAN-Base-on-Matlab-master\gradient\calculate_gradient_for_fully_connect_layer.m, 179 , 2018-12-12
GAN-Base-on-Matlab-master\layer, 0 , 2018-12-12
GAN-Base-on-Matlab-master\layer\atrous_conv2d.m, 893 , 2018-12-12
GAN-Base-on-Matlab-master\layer\batch_norm.m, 1074 , 2018-12-12
GAN-Base-on-Matlab-master\layer\check_layer_field_names.m, 579 , 2018-12-12
GAN-Base-on-Matlab-master\layer\conv2d.m, 1062 , 2018-12-12
GAN-Base-on-Matlab-master\layer\conv2d_transpose.m, 1933 , 2018-12-12
GAN-Base-on-Matlab-master\layer\reshape_operation.m, 300 , 2018-12-12
GAN-Base-on-Matlab-master\layer\setup_atrous_conv2d_layer.m, 1631 , 2018-12-12
GAN-Base-on-Matlab-master\layer\setup_batch_norm_layer.m, 751 , 2018-12-12
GAN-Base-on-Matlab-master\layer\setup_conv2d_layer.m, 1594 , 2018-12-12
GAN-Base-on-Matlab-master\layer\setup_conv2d_transpose_layer.m, 5976 , 2018-12-12
GAN-Base-on-Matlab-master\layer\setup_fully_connect_layer.m, 704 , 2018-12-12
GAN-Base-on-Matlab-master\layer\setup_reshape_layer.m, 454 , 2018-12-12
GAN-Base-on-Matlab-master\layer\setup_sub_sampling_layer.m, 389 , 2018-12-12
GAN-Base-on-Matlab-master\layer\sub_sample.m, 346 , 2018-12-12
GAN-Base-on-Matlab-master\nerual_network_flow, 0 , 2018-12-12
GAN-Base-on-Matlab-master\nerual_network_flow\nn_applygrads_adam.m, 1408 , 2018-12-12
GAN-Base-on-Matlab-master\nerual_network_flow\nn_applygrads_sgd.m, 602 , 2018-12-12
GAN-Base-on-Matlab-master\nerual_network_flow\nn_bp_d.m, 2904 , 2018-12-12
GAN-Base-on-Matlab-master\nerual_network_flow\nn_bp_g.m, 2981 , 2018-12-12
GAN-Base-on-Matlab-master\nerual_network_flow\nn_ff.m, 1633 , 2018-12-12
GAN-Base-on-Matlab-master\nerual_network_flow\nn_setup.m, 1157 , 2018-12-12
GAN-Base-on-Matlab-master\readme_images, 0 , 2018-12-12
GAN-Base-on-Matlab-master\readme_images\1.png, 3660 , 2018-12-12
GAN-Base-on-Matlab-master\readme_images\2.png, 3589 , 2018-12-12
GAN-Base-on-Matlab-master\readme_images\3.png, 4283 , 2018-12-12
GAN-Base-on-Matlab-master\setup_environment.m, 296 , 2018-12-12
GAN-Base-on-Matlab-master\test, 0 , 2018-12-12
GAN-Base-on-Matlab-master\test\convolution_process.m, 1821 , 2018-12-12
GAN-Base-on-Matlab-master\util, 0 , 2018-12-12
GAN-Base-on-Matlab-master\util\argparse.m, 259 , 2018-12-12
GAN-Base-on-Matlab-master\util\expand.m, 1958 , 2018-12-12
GAN-Base-on-Matlab-master\util\flipall.m, 77 , 2018-12-12
GAN-Base-on-Matlab-master\util\insert_zeros_into_array.m, 329 , 2018-12-12
GAN-Base-on-Matlab-master\util\padding_height_width_in_array.m, 476 , 2018-12-12
GAN-Base-on-Matlab-master\util\save_images.m, 623 , 2018-12-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 利用SVM或者其他机器学习算法进行分类识别 LBP
    (1)计算图像中每个像素点的LBP模式(等价模式,或者旋转不变+等价模式)。 (2)然后计算每个cell的LBP特征值直方图,然后对该直方图进行归一化处理(每个cell中,对于每个bin,h[i]/=sum,sum就是一副图像中所有等价类的个数)。 (3)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量; 然后便可利用SVM或者其他机器学习算法进行分类识别了。((1) calculate the LBP pattern of each pixel in the image (equivalent mode, or rotation invariant + equivalent mode). (2) then the LBP eigenvalue histogram of each cell is calculated, and then the histogram is normalized (for each cell, for each bin, h[i]/=sum, sum is the number of all the equivalent classes in a pair of images). (3) finally, the statistical histogram of each cell is connected into a feature vector, that is, the LBP texture feature vector of the whole picture. Then, SVM or other machine learning algorithms can be used for classification and recognition.)
    2020-07-01 20:00:02下载
    积分:1
  • 维数计算的matlab
    说明:  对二维图像进行分形维数的计算,采用差分盒维数进行计算,并且进行了拟合误差的计算(The fractal dimension of two-dimensional image is calculated by using the differential box dimension, and the fitting error is calculated)
    2021-04-23 15:59:45下载
    积分:1
  • shapefromshading_varynoise
    estimate shape of a noisy image from the shading information
    2013-09-12 17:40:57下载
    积分:1
  • speech-emotion-recognition
    过特定人语音情感数据库的建立;语音情感特征提取;语音情感分类器的设计,完成了一个特定人语音情感识别的初步系统。对于单个特定人,可以识别平静、悲伤、愤怒、惊讶、高兴5种情感,除愤怒和高兴之间混淆程度相对较大之外,各类之间区分特性良好,平均分类正确率为93.7 。对于三个特定人组成的特定人群,可以识别平静、愤怒、悲伤3种情感,各类之间区分特性良好,平均分类正确率为94.4 。其中分类器采用混合高斯分布模型。(The system of speech emotion recognition)
    2014-04-21 20:08:42下载
    积分:1
  • levelsetImagesegment
    自己用水平集方法编的,实现了医学图像的分割,效果不错,可试一下(Their allocation by level set method, and realize the medical image segmentation, the effect good, can try)
    2008-04-14 10:25:51下载
    积分:1
  • TV复原
    TV模型属于图像处理领域里面的图像修复模型,对图像处理邻域的学习有很大的裨益(The TV model belongs to the image restoration model in the field of image processing, which is of great benefit to the study of image processing neighborhoods.)
    2021-03-30 22:09:09下载
    积分:1
  • 动态背景
    用vibe算法提取动态背景的前景信息,背景为白色(Vibe algorithm is used to extract foreground information of the dynamic background, the background is white)
    2020-11-17 21:39:44下载
    积分:1
  • TMyPolyStockh
    实现凸多边形排样,使用临界多边形NFP判断两个凸多边形形是否相交,使用启发式算法提高效率, (Convex polygon nesting, polygon NFP to determine whether two convex polygon-shaped intersection, the use of heuristic algorithms to improve efficiency,)
    2021-03-30 22:59:09下载
    积分:1
  • quzao1
    说明:  广义灰度数学形态学滤波,输入信号,结构元素的长度,类型(Generalized gray-scale mathematical morphology filter, the input signal, the length of structural elements, type)
    2008-10-13 10:16:53下载
    积分:1
  • MATLAB智能算法30个案例分析 源代码
    采用平均图像融合算法,设计并实现基于小波变换的图像融合算法(选择同一场景的三对可见图像、红外图像或SAR图像进行试验)(Average image fusion algorithm is adopted to design and implement image fusion algorithm based on wavelet transform (three pairs of visible images, infrared images or SAR images of the same scene are selected for testing))
    2018-08-13 16:00:11下载
    积分:1
  • 696518资源总数
  • 106208会员总数
  • 21今日下载