登录
首页 » Others » String Hex to DBL

String Hex to DBL

于 2018-12-24 发布
0 359
下载积分: 1 下载次数: 2

代码说明:

说明:  16进制字符串转十进字符串制显示labview(Hex to decimal conversion)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • CEC2014测试函数及相应函数解释说明
    CEC2014测试函数PartA及B的M文件和函数说明及结果分析
    2020-12-11下载
    积分:1
  • 点云TXT转换PCD
    利用pcl,转换txt格式点云数据为pcd格式
    2020-12-06下载
    积分:1
  • 2958825
    本源程序使用使用环境为ADS1 2,针对三星2410板子的GPRS模块的源程序,非常具有实用价值()
    2018-07-08 20:41:29下载
    积分:1
  • 随机森林用于分类matlab代码
    根据随机森林的原理实现的matlab代码,里面有非常详细的注释,几乎每行都有,针对分类问题,可以运行,可以根据需要,修改到自己的算法中。
    2020-11-28下载
    积分:1
  • 转速反馈单闭环直流调速系统仿真
    用simulink实现直流电机模型的开环仿真,再通过加控制器(比例环节和比例积分环节)实现其闭环仿真。
    2021-05-06下载
    积分:1
  • 南京大学计算机CS专业复试超全PPT及真题、面试内部资料(离散译上机面试)
    【优质资源】(资源整理自王道以及2018CS考研劝退,若有侵权删,很感谢学长学姐对于我考研的帮助,此次自己也是把复试资料认真整理一遍,希望能对志在考南大CS的学弟学妹有所帮助)内容包括离散数学和编译原理南大老师的全部课件,/**—>最重要的文件是近十年的离散数学和编译原理的真题<—**/,还有一份面试真题总结,以及上机提示以及上机题目整理,都是帮助我复试非常有用的文件,另外还有一份南京大学计算机系计算机技术专业硕士研究生培养方案以及17年录取分数参考,希望对学弟学妹也有所帮助蟹蟹支持o(* ̄▽ ̄*)ブ/**第二次补充**/谢提醒,补充了2009-2014南大上机试题,指定上机书目的课后习
    2020-12-07下载
    积分:1
  • 2012年全国大学生数学建模竞赛A题一等奖论文
    2012年全国大学生数学建模竞赛A题一等奖论文。高教社杯全国大学生数学建模竞赛编号专用页赛区评侧编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于数理分析的葡萄及葡萄酒评价体系摘要葡萄酒的质量评价是硏究葪萄酒的一个重要领域,目前葡萄酒的质量主要由评酒师感官评定。但感官评定存在人为因素,业界一自在尝试用葡萄的理化指标或者葡萄洏的理化指标定量评价葡萄洒的质量。本题要求我们根据葡萄以及葡萄酒的相关数据建模,并研究基」理化指标的葡萄酒评价体系的建立对于问题一,我们首先用配对样品t检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS软件对两组ⅳ酒员的评分的各个指标以及总评分进行了配对样本t检验。得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异白葡萄、红葡萄以及整休的评价存在显著性差异接着我们建立了数掂可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。得到第2组的方差明显小于第1组的从而得出了第2组评价数据的可信度更高的结论。对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。方面,我们对酿酒葡萄的级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27种葡萄理化指标的综合得分及其排序(见正文表5)。另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27种葡萄酒质量的综合得分并排序(见正文表6)。最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5级(见正文表8)。对于问一,首先我们将众多的葡萄理化指标用主成分分析法综合成6个主因子,并将葡萄等级也列为主因子之一。对葡萄的6个主因子,以及葡萄酒的10个指标用SPSS软件进行偏相关分析,得到酒黃酮与葡萄的等级正相关性较强等结论。之后对相关性较强的主因子和指标作多元线性回归。得到了葡萄酒10个单指标与主因了之间的多元回归方程,该回归方程定量表示两者之间的联系对于问题四,我们首先将葡萄酒的理化指标标准化处理,对葡萄酒的质量与荀萄的6个主因子和葡萄酒的10个单指标作偏相关分析,并求出多元线性回归方程。该方程就表示了葡萄和葡萄酒理化指标对葡萄酒质量的影响。之后,我们通过通径分析方法中的逐步回归分析得到葡萄与葡萄酒的理化指标只确定了葡萄酒质量信息的47%。从而得出了不能用葡萄和葡萄酒的理化指标评价葡萄酒的质量的结论。接着我们还采用通径分析屮的间接通径系数分析求出各自变量之间通过传递作用对应变量的影响,得到单宁与总酚传递性影响较强等结论最后,我们对模型的改进方向以及优缺点进行了讨论。关键词:配对样本t检验数据可信度评价主成分分析模糊数学评价综合评分信息熵偏相关分析多元线性回归1问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒荀萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件中给岀∫某年份一些葡萄酒的评价结果,并分別给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。我们需要建立数学模型并且讨论下列问题:1.分析附件1中两组评洒员的评价结果有无显著性差异,并确定哪一组的评价结果更可信。2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。3.分析酿酒葡萄与葡萄酒的理化指标之间的联系。4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用荀萄和葡萄酒的理化指标来评价葡萄酒的质量2模型的假设与符号的约定2.1模型的假设与说明(1)评酒员的打分是按照加分制(不采用扣分制);(2)假设20名评酒员的评价八度在同一区间(数据合理,不需要标准化)(3)每位评酒员的系统误差较小,在本问题屮可以忽略不计(4)假设附件中给出的葡萄和荀萄酒理化指标都准确可靠。2.2符号的约定与说明符号符号的意义原假设显著性概率第1组评酒员对第号品种葡萄酒评分的平均值,第2组评洒员对第号品种葡萄酒评分的平均值第一组评酒员对指标评分的偏差的方差,第二组评酒员对指标评分的偏差的方差,=…,第1组10位评酒员对号酒样品第项指标评分的平均分第组第号评酒员对号酒样品第项指标评分与平均值的偏第1组第号评酒员对其项指标评分与平均值的偏差的平均第2组第个评酒员的总体指标偏差的方差重新确立的第项指标的权重第2组10个评酒员的总体指标偏差的方差评酒员指标的平均评分,=葡萄的第项指标,葡萄的第项因子,=葡萄酒的第项理化指标3问题一的分析与求解3.1问题一的分析题冂要求我们根据两组评酒员对27种红葡萄洒和28种白葡萄泙的10个指标相应的打分情况进行分析,并确定两组评酒员对葡萄酒的评价结果是否有显著性差异,然后判断哪组评酒员的评价结果更可信初步分析可知:由于评酒员对颜色、气味等感官指标的衡量人度不同,因此两组评酒员评价结果是否具有显著性差异应该与评价指标的类型有关,不同的评价指标的显著性差异可能会不同。同时,由于红葡萄酒和白葡萄酒的外观、口味竽指标羔异性较大,处理时需要将白葡萄酒和红葡萄酒的评价结果的显著性差昦分开讨论。基于以上分析,我们可以分别两组品尝同一种类酒样品的评酒员的评价结果进行两两配对,分析配对的数据是否满烂配对样品t检验的前提条件,而且根据常识可知评酒员对同一种酒的同一指标的评价在实际中是符合t检验的条件的。接着我们就可以对数据进行多组配对样品的t检验,从而对两组评洒员评价结果的显著性差异进行检验。由于对同一酒样品的评价数据只有两组,我们只能通过评价结果的稳定性来判定结果的可靠性。而每组结果的可靠性乂最终决定于每个评酒员的稳定性,因此将问题转化为对评酒员稳定性的评价。3.2配对样品的t检验简介统计知识指出:配对样本是指对冋一样本进行两次测试所获得的两组数据,或对两个完全相同的样本在不同条件下进行测试所得的两组数据。在本问中我们可以把配对样品理解为有27组两个完全相同的酒样品在两组不同评酒员的检测下得到的两组数据,两组屮各个指标的数据为每组评酒员对该指标打分的平均值配对样品的t检验可检测配对双方的结果是否具有显著性差异,因此就可以检验出配对的双方(第一组与第二组)对葡萄酒的评价结果是否冇差异性型对样品t检验具有的前提条件为:(1)两样品必须配对(2)两样品来源的总体应该满足正态性分布。配对样品t检验基本原理是:求出每对的差值如果两种处理实际上没有差异,则差值的总体均数应当为0,从该总体中抽出的样本其均数也应当在0附近波动;反之,如果两种处理有差异,差值的总体均数就应当远离0,其样本均数也应当远离0。这样,通过检验该差值总体均数是否为0,就可以得知两种处理有无差异。该检验相应的假设为:=,两种处理没有差別,4≠两和处理存在差别3.3葡萄酒配对样品的t检验问题一中配对样品为27组两个完全相同的酒样品在两组不同评酒员的检测下得到的两组数据,其中两组中各个指标的数据为各组10个评酒员对该指标打分的平均值。该问题中的10个指标分别为:外观澄清度、外观色调、香气纯正度、香气浓度、香气质量、口感纯正度、口感浓度、口感持久性、口感质量、平衡/总休评价。根据t检验的原理,对荀萄酒配对样品进行t检验之前我们要对样品进行正态性检验。首先我们根据附件一并处理表格中的数据,得到配对样品的两组数据,绘制红葡萄酒配对样品表格部分数据如表1表1红葡萄酒配对样品数据表澄清度澄清度平衡/整平衡/整(1组均值)(2组均值)体评价(1组体评价(2组均值)均值)2.3.18.4红29.6红263.63.78.8红273.73.78.8白葡萄酒配对样品表格部分数据如表2:表2白葡萄酒配对样品数据表澄清度澄清度平衡/整平衡/整(1组均值)(2组均值)体评价(1组体评价(2组均值)均值)白17.78.4白22.93.19.1日26白273.778.8从上表中我们能看出,将白葡萄酒和红葡萄酒中的每个指标分别进行样品的配对后,每一个指标的配对结果有27对,每一对的双方分别是1组和2组的评酒员对该指标的评分的平均值。3.3.1样本总体的K-S正态性检验配对样品的t检验要求两对应样品的总体满足正态分布,则总体中的样品应该满足正态性或者近似正态性,样本的正态性检验如卜以红葡萄酒的澄清度的27组数据为例分析:利用SPSS软作绘制两样品的直方图和趋势图如图1所示:图1红葡萄酒澄清度两组数据自方图我们假设两组总体数据都服从态分布,利用SPSS软件进行KS忙态性检验的具体结果见附录2.3。两组数据的近似相伴概率值P分别为0.239和0.329,大于我们一般的显著水平0.05则接受原来假设,即两组红葡萄酒的澄清度数据符合近似正态分布同理可用SPSS软件对其他指标的正态性进行检验,得到结果符合实际猜想,都服从近似正态分布。3.3.2葡萄酒配对样品t检验步骤两种葡萄酒的处理过程类似,这里我们以对红葡萄酒谜价结果的差异的显著性分析为例。step1:我们以第一组对葡萄酒的评价结果总体服从正态分布〃σ,以第二组对葡萄酒的评价结果总体服从正态分布μσ。我们已分别从两总体中获得了抽样样本和,并分别进行两样品相互配对。(具体数据见附录2.1)Step2:;引进一个新的随机变量,对应的样本为将配对样本的t检验转化为单样本t检验Step3:建立零假设4=,构造t统计量;Step4:利用SPSS进行配对样品t检验分析,并对结果做出推断3.4显著性差异结果分析3.3.1红葡萄酒各指标差异显著性分析由SPSS软件对红葡萄酒各指标的配对样品讠枍验后,得到各指标的显著性概率分布表。(结果如表3所示)表3红葡萄酒酒各指标显著性概率P指标外观澄清度外观色调香气纯正度香气浓度‖香气质量P0.6140.0020.1510.1000.010指标口感纯正度口感浓度口感持久性口感质量平衡/整体P0.4370.1580.2510.0550.674由统计学知识,如果显著性概率P显著水平α,则不能拒绝零假设,即认为两总体样本的均值不存在显著差异。则根据表3可得:两组评酒员对红葡萄酒各项指标的评价中除外观色调、香气质量存在显著性差异以外,其他8项指标都无显著性差异。3.3.2白葡萄酒各指标差异显著性分析代入白葡萄酒的评价数据,重复以上步骤,得到白荀萄酒各指标的显著性概率分布表。(结果如表4所示)表4白葡萄酒各指标显著性概率P分布表指标外观澄清度外观色调香气纯正度香气浓度香气质量P0,2990.0890.930.2380.714指标口感纯正度口感浓度口感持久性口感质量平衡/整体0,0000.0050.8630.0000.00l分析表4可得:两组评酒员对白葡萄酒各项指标的评价中只有凵感纯正度」感浓度、凵感质量、平衡/整体评价存在显著性差异,其他6项指标都无显著性差异3.3.3葡萄酒总体差异显著性分析(1)红葡萄酒总体差异显著性分析该问题的附件中已经给出了10项指标的杈重,因此将10项指标利用加权合并成总体评价。对于红葡萄酒两组评价结果构造两组配对t检验。得到显著性概率P=0.030
    2020-12-04下载
    积分:1
  • Simulink EKF vehicle model
    利用扩展卡尔曼滤波(extended kalman fiklter)技术实现的滑移率观测器。车辆模型用四分之一车辆模型代替。
    2020-12-03下载
    积分:1
  • FAST检测角点+SIFT特征描述符描述角点(MATLAB)
    FAST算法原理:若某像素与其周围邻域内足够多的像素点相差较大,则该点可能是角点。用FAST算法检测角点,代替差分高斯金字塔取极值检测角点的方法,速度块;接着用SIFT特征描述符描述角点,省略尺度空间值,只用原图像中角点邻域的梯度值和方向计算角点主方向,接着计算32个方向向量来描述角点。之和可用于特征点匹配。
    2021-05-07下载
    积分:1
  • 数值分析 最小二乘拟合
    在MATLAB上实现最小二乘拟合 有详细注释
    2020-11-30下载
    积分:1
  • 696518资源总数
  • 104228会员总数
  • 45今日下载