登录
首页 » Python » 机器学习Python程序

机器学习Python程序

于 2018-10-26 发布 文件大小:106KB
0 179
下载积分: 1 下载次数: 12

代码说明:

  覆盖了基本常用的机器学习算法。包括线性回归与分类算法;决策树;多种降维算法;优化算法;强化学习等多类算法的Python代码。(It covers the commonly used machine learning algorithms. Including linear regression and classification algorithm; decision tree; a variety of dimensionality reduction algorithm; optimization algorithm; reinforcement learning and other algorithms of Python code.)

文件列表:

Machine Learning, 0 , 2009-04-20
Machine Learning\src, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction\ecoli.py, 1660 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\factoranalysis.py, 1730 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\floyd.py, 1389 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\iris.py, 2520 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\isomap.py, 3512 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kernelpca.py, 1947 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kpcademo.py, 1452 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lda.py, 1689 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lle.py, 1979 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pca.py, 1227 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pcademo.py, 849 , 2009-03-25
Machine Learning\src\11 Optimisation, 0 , 2009-04-20
Machine Learning\src\11 Optimisation\CG.py, 1579 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt.py, 1748 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt_leastsq.py, 2692 , 2009-03-25
Machine Learning\src\11 Optimisation\Newton.py, 965 , 2009-03-25
Machine Learning\src\11 Optimisation\steepest.py, 841 , 2009-03-25
Machine Learning\src\11 Optimisation\TSP.py, 5392 , 2009-03-25
Machine Learning\src\12 Evolutionary, 0 , 2009-04-20
Machine Learning\src\12 Evolutionary\exhaustiveKnapsack.py, 1015 , 2009-03-25
Machine Learning\src\12 Evolutionary\fourpeaks.py, 1019 , 2009-03-25
Machine Learning\src\12 Evolutionary\ga.py, 5505 , 2009-03-25
Machine Learning\src\12 Evolutionary\greedyKnapsack.py, 1044 , 2009-03-25
Machine Learning\src\12 Evolutionary\knapsack.py, 849 , 2009-03-25
Machine Learning\src\12 Evolutionary\PBIL.py, 1466 , 2009-03-25
Machine Learning\src\12 Evolutionary\run_ga.py, 502 , 2009-03-25
Machine Learning\src\13 Reinforcement, 0 , 2009-04-20
Machine Learning\src\13 Reinforcement\SARSA.py, 1987 , 2009-03-25
Machine Learning\src\13 Reinforcement\SARSA_cliff.py, 4604 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero.py, 1415 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero_cliff.py, 4118 , 2009-03-25
Machine Learning\src\14 MCMC, 0 , 2009-04-20
Machine Learning\src\14 MCMC\BoxMuller.py, 1062 , 2009-03-25
Machine Learning\src\14 MCMC\Gibbs.py, 1475 , 2009-03-25
Machine Learning\src\14 MCMC\importancesampling.py, 1207 , 2009-03-25
Machine Learning\src\14 MCMC\lcg.py, 847 , 2009-03-25
Machine Learning\src\14 MCMC\MH.py, 1527 , 2009-03-25
Machine Learning\src\14 MCMC\rejectionsampling.py, 1412 , 2009-03-25
Machine Learning\src\14 MCMC\SIR.py, 1557 , 2009-03-25
Machine Learning\src\15 Graphical Models, 0 , 2009-04-20
Machine Learning\src\15 Graphical Models\Gibbs.py, 4660 , 2009-03-25
Machine Learning\src\15 Graphical Models\graphdemo.py, 852 , 2009-03-25
Machine Learning\src\15 Graphical Models\HMM.py, 3364 , 2009-03-25
Machine Learning\src\15 Graphical Models\Kalman.py, 1841 , 2009-03-25
Machine Learning\src\15 Graphical Models\MRF.py, 1607 , 2009-03-25
Machine Learning\src\15 Graphical Models\world.png, 751 , 2009-03-25
Machine Learning\src\2 Linear, 0 , 2009-04-20
Machine Learning\src\2 Linear\auto-mpg.py, 866 , 2009-03-25
Machine Learning\src\2 Linear\linreg.py, 671 , 2009-03-25
Machine Learning\src\2 Linear\linreg_logic_eg.py, 1066 , 2009-03-25
Machine Learning\src\2 Linear\logic.py, 1014 , 2009-03-25
Machine Learning\src\2 Linear\pcn.py, 2443 , 2009-03-25
Machine Learning\src\2 Linear\pcn_logic_eg.py, 2182 , 2009-03-25
Machine Learning\src\2 Linear\pima.py, 1786 , 2009-03-25
Machine Learning\src\3 MLP, 0 , 2009-04-20
Machine Learning\src\3 MLP\iris.py, 2048 , 2009-03-25
Machine Learning\src\3 MLP\iris_proc.data, 2700 , 2009-03-25
Machine Learning\src\3 MLP\logic.py, 1262 , 2009-03-25
Machine Learning\src\3 MLP\mlp.py, 5032 , 2009-04-20
Machine Learning\src\3 MLP\PNoz.dat, 185575 , 2009-03-25
Machine Learning\src\3 MLP\PNOz.py, 1699 , 2009-03-25
Machine Learning\src\3 MLP\sinewave.py, 1625 , 2009-03-25
Machine Learning\src\4 RBF, 0 , 2009-04-20
Machine Learning\src\4 RBF\iris.py, 1496 , 2009-03-25
Machine Learning\src\4 RBF\least_squares.py, 754 , 2009-03-25
Machine Learning\src\4 RBF\rbf.py, 3479 , 2009-03-25
Machine Learning\src\6 Trees, 0 , 2009-04-20
Machine Learning\src\6 Trees\dtree.py, 5852 , 2009-03-25
Machine Learning\src\6 Trees\party.data, 211 , 2009-03-25
Machine Learning\src\6 Trees\party.py, 707 , 2009-03-25
Machine Learning\src\7 Committee, 0 , 2009-04-20
Machine Learning\src\7 Committee\bagging.py, 1770 , 2009-03-25
Machine Learning\src\7 Committee\boost.py, 5196 , 2009-03-25
Machine Learning\src\7 Committee\car.data, 51921 , 2009-03-25
Machine Learning\src\7 Committee\car.py, 1935 , 2009-03-25
Machine Learning\src\7 Committee\dtw.py, 7830 , 2009-03-25
Machine Learning\src\7 Committee\party.py, 926 , 2009-03-25
Machine Learning\src\8 Probability, 0 , 2009-04-20
Machine Learning\src\8 Probability\gaussian.py, 1488 , 2009-03-25
Machine Learning\src\8 Probability\GMM.py, 1759 , 2009-03-25
Machine Learning\src\8 Probability\kdtree.py, 2490 , 2009-03-25
Machine Learning\src\8 Probability\knn.py, 957 , 2009-03-25
Machine Learning\src\8 Probability\knnSmoother.py, 2672 , 2009-03-25
Machine Learning\src\8 Probability\plotGaussian.py, 713 , 2009-03-25
Machine Learning\src\8 Probability\ruapehu.dat, 1136 , 2009-03-25
Machine Learning\src\9 Unsupervised, 0 , 2009-04-20
Machine Learning\src\9 Unsupervised\iris.py, 2188 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeans.py, 2126 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeansnet.py, 1535 , 2009-03-25
Machine Learning\src\9 Unsupervised\moredemos.py, 2154 , 2009-03-25
Machine Learning\src\9 Unsupervised\shortecoli.data, 11970 , 2009-03-25
Machine Learning\src\9 Unsupervised\som.py, 3488 , 2009-03-25
Machine Learning\src\9 Unsupervised\somdemo.py, 2845 , 2009-03-25

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GeoQ_Spider
    说明:  通过PYTHON编写的爬虫程序,爬取Geoq的人口密度数据(The population density data of Geoq is crawled by a crawler program written in PYTHON)
    2020-06-21 12:20:02下载
    积分:1
  • pwwMap 核心技术
    大数据的关键技术,目前世界最核心的技术。
    2022-03-18 23:47:53下载
    积分:1
  • 爬知乎妹子
    通过Selenium爬取知乎上面的妹子图(Spider For Girls On ZhiHu)
    2018-06-11 11:40:39下载
    积分:1
  • 7614946
    《计算机数学基础》数值分析期末复习提纲(12-14章) <doc格式> (下载) 《计算机数学基础》 《计算机()
    2017-12-02 07:36:01下载
    积分:1
  • 值网格写为CFD可读取的格式
    说明:  软件pfc划分流固耦合网格神器划分流固耦合网格神器(Software PFC division fluid solid coupling mesh artifact division fluid solid coupling mesh artifact)
    2021-03-24 11:59:14下载
    积分:1
  • Wcntent-solve
    用VB实现数值积分的算法集,包括梯形求积法,反常积分,三重积分,龙贝格方法,辛卜生方法等6种方法,(VB is used to realize the algorithm set of numerical integration, including trapezoidal quadrature method, anomalous integral, triple integral, Romberg method, Simbsen method and so on.)
    2018-11-24 16:12:42下载
    积分:1
  • boston_housing
    说明:  采用机器学习预测房价.使用波士顿房屋信息数据来训练和测试一个模型,并对模型的性能和预测能力进行评估。(Using Machine Learning to Predict House Prices)
    2019-10-04 11:48:44下载
    积分:1
  • dcc-garch
    用R语言做dcc-garch 模型的全过程代码(Using the R language to do the dcc-garch model)
    2021-01-07 13:28:53下载
    积分:1
  • python-knn
    主要利用Python软件,利用KNN算法对垃圾邮件进行分类(This paper mainly uses Python software to classify spam mail by using KNN algorithm)
    2017-11-10 15:46:56下载
    积分:1
  • 金属融化问题
    南开大学  金属融化问题  辛运帏老师  C++实现  含测试样例
    2022-05-17 21:26:23下载
    积分:1
  • 696518资源总数
  • 104292会员总数
  • 28今日下载