登录
首页 » Python » machinelearninginaction

machinelearninginaction

于 2018-10-16 发布 文件大小:401KB
0 158
下载积分: 1 下载次数: 1

代码说明:

  Python机器学习及实践,第二章到第四章源码(Python machine learning and Practice)

文件列表:

Ch02, 0 , 2018-10-16
Ch02\EXTRAS, 0 , 2018-10-16
Ch02\EXTRAS\README.txt, 522 , 2011-04-29
Ch02\EXTRAS\createDist.py, 2052 , 2010-10-27
Ch02\EXTRAS\createDist2.py, 2162 , 2011-05-31
Ch02\EXTRAS\createFirstPlot.py, 561 , 2011-05-31
Ch02\EXTRAS\testSet.txt, 0 , 2010-10-27
Ch02\README.txt, 240 , 2010-10-10
Ch02\datingTestSet.txt, 35725 , 2012-03-01
Ch02\datingTestSet2.txt, 27067 , 2012-03-01
Ch02\digits.zip, 739988 , 2011-05-04
Ch02\kNN.py, 4268 , 2011-05-31
Ch02\kNN.pyc, 4500 , 2011-05-31
Ch02\testSet.txt, 0 , 2011-05-31
Ch03, 0 , 2018-10-16
Ch03\classifierStorage.txt, 101 , 2010-10-16
Ch03\lenses.txt, 795 , 2012-01-09
Ch03\treePlotter.py, 3911 , 2012-01-09
Ch03\treePlotter.pyc, 3399 , 2012-01-09
Ch03\trees.py, 4170 , 2011-12-11
Ch03\trees.pyc, 3692 , 2012-01-09
Ch04, 0 , 2018-10-16
Ch04\EXTRAS, 0 , 2018-10-16
Ch04\EXTRAS\README.txt, 522 , 2011-04-29
Ch04\EXTRAS\create2Normal.py, 961 , 2010-10-25
Ch04\EXTRAS\monoDemo.py, 456 , 2010-10-22
Ch04\bayes.py, 7247 , 2010-10-24
Ch04\bayes.pyc, 6957 , 2011-12-19
Ch04\email, 0 , 2018-10-16
Ch04\email\ham, 0 , 2018-10-16
Ch04\email\ham\1.txt, 148 , 2010-10-23
Ch04\email\ham\10.txt, 86 , 2010-10-23
Ch04\email\ham\11.txt, 130 , 2010-10-23
Ch04\email\ham\12.txt, 182 , 2010-10-23
Ch04\email\ham\13.txt, 174 , 2010-10-23
Ch04\email\ham\14.txt, 172 , 2010-10-23
Ch04\email\ham\15.txt, 531 , 2010-10-23
Ch04\email\ham\16.txt, 90 , 2010-10-23
Ch04\email\ham\17.txt, 464 , 2010-10-23
Ch04\email\ham\18.txt, 175 , 2010-10-23
Ch04\email\ham\19.txt, 161 , 2010-10-23
Ch04\email\ham\2.txt, 234 , 2010-10-23
Ch04\email\ham\20.txt, 208 , 2010-10-23
Ch04\email\ham\21.txt, 234 , 2010-10-23
Ch04\email\ham\22.txt, 330 , 2010-10-23
Ch04\email\ham\23.txt, 608 , 2010-10-23
Ch04\email\ham\24.txt, 42 , 2010-10-23
Ch04\email\ham\25.txt, 89 , 2010-10-23
Ch04\email\ham\3.txt, 371 , 2010-10-23
Ch04\email\ham\4.txt, 207 , 2010-10-23
Ch04\email\ham\5.txt, 114 , 2010-10-23
Ch04\email\ham\6.txt, 1464 , 2010-10-23
Ch04\email\ham\7.txt, 109 , 2010-10-23
Ch04\email\ham\8.txt, 638 , 2010-10-23
Ch04\email\ham\9.txt, 146 , 2010-10-23
Ch04\email\spam, 0 , 2018-10-16
Ch04\email\spam\1.txt, 238 , 2010-10-23
Ch04\email\spam\10.txt, 217 , 2010-10-23
Ch04\email\spam\11.txt, 414 , 2010-10-23
Ch04\email\spam\12.txt, 188 , 2010-10-23
Ch04\email\spam\13.txt, 252 , 2010-10-23
Ch04\email\spam\14.txt, 210 , 2010-10-23
Ch04\email\spam\15.txt, 338 , 2010-10-23
Ch04\email\spam\16.txt, 338 , 2010-10-23
Ch04\email\spam\17.txt, 254 , 2010-10-23
Ch04\email\spam\18.txt, 258 , 2010-10-23
Ch04\email\spam\19.txt, 398 , 2010-10-23
Ch04\email\spam\2.txt, 298 , 2010-10-23
Ch04\email\spam\20.txt, 362 , 2010-10-23
Ch04\email\spam\21.txt, 229 , 2010-10-23
Ch04\email\spam\22.txt, 362 , 2010-10-23
Ch04\email\spam\23.txt, 338 , 2010-10-23
Ch04\email\spam\24.txt, 338 , 2010-10-23
Ch04\email\spam\25.txt, 264 , 2010-10-23
Ch04\email\spam\3.txt, 414 , 2010-10-23
Ch04\email\spam\4.txt, 229 , 2010-10-23
Ch04\email\spam\5.txt, 238 , 2010-10-23
Ch04\email\spam\6.txt, 252 , 2010-10-23
Ch04\email\spam\7.txt, 169 , 2010-10-23
Ch04\email\spam\8.txt, 338 , 2010-10-23
Ch04\email\spam\9.txt, 169 , 2010-10-23
Ch04\email.zip, 15141 , 2011-05-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • sklearn-tree-BN-knn
    分类器的性能比较与调优: 使用scikit-learn 包中的tree,贝叶斯,knn,对数据进行模型训练,尽量了解其原理及运用。 使用不同分析三种分类器在实验中的性能比较,分析它们的特点。 本实验采用的数据集为house与segment。(Performance comparison and optimization of classifiers: We use tree, Bayesian and KNN in scikit-learnpackage to train the data model and try to understand its principle and application. The performances of three classifiers are compared and their characteristics are analyzed. The data set used in this experiment is house and segment.)
    2021-04-16 15:08:53下载
    积分:1
  • BIC确定GMM聚类簇
    说明:  通过贝叶斯信息准则确定高斯混合聚类方法的聚类簇数(Determining the Cluster Number of GMM Clusters by BIC)
    2021-03-26 19:19:13下载
    积分:1
  • 《Python分析与应用:从获取到可视化》源代码
    【实例简介】
    2021-05-18 10:33:57下载
    积分:1
  • IABC_KMC_test_on_Iris_wine_glass
    克服K均值聚类算法易受初始聚类中心影响的缺点,优化K均值聚类算法(The K mean clustering algorithm is easily affected by the initial cluster center, and the K mean clustering algorithm is optimized.)
    2018-03-08 11:24:25下载
    积分:1
  • Spider_baiduvideo
    利用urllib.request进行爬虫, 下载百度视频页面的所有图片保存到本地(Use urllib.request for crawl. Download all the pictures from Baidu video page to local.)
    2018-04-02 18:32:19下载
    积分:1
  • FDP聚类算法
    说明:  一种无监督的聚类算法,基于密度聚类,名称为基于快速搜索与寻找密度峰值的聚类(Clustering by fast search and find of desity peaks)
    2020-02-24 15:43:51下载
    积分:1
  • dcc-garch
    用R语言做dcc-garch 模型的全过程代码(Using the R language to do the dcc-garch model)
    2021-01-07 13:28:53下载
    积分:1
  • Adaboost
    Python实现Adaboost算法,数据集为horseColic马疝气病数据集,准确率和sklearn库中的adaboost算法一样。(Python implementation adaboost algorithm, the data set is horseColic horse hernia disease data collection, accuracy and sklearn library adaboost the same algorithm.)
    2017-04-21 15:00:34下载
    积分:1
  • 妹子图
    通过Python对妹子图网站的图片集进行爬取(Crawling the collection of images on the sister map site via Python)
    2018-11-15 16:13:39下载
    积分:1
  • balancerenyesent
    用MATLAB实现模拟立方体的重构,是计算机视觉中三维重构的重要的应用实验()
    2018-05-13 14:09:32下载
    积分:1
  • 696518资源总数
  • 104287会员总数
  • 49今日下载