登录
首页 » Python » python数据分析 韩波

python数据分析 韩波

于 2018-09-08 发布 文件大小:171KB
0 226
下载积分: 1 下载次数: 8

代码说明:

  一本python数据分析的优秀资料 《python数据分析》(python data analysis),作者【印尼】Ivan Idris,翻译:韩波。 本人制作的PDF图书,带目录和书签。 作为一种高级程序设计语言,Python凭借其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言。同时,Python语言的数据分析功能也逐渐为大众所认可。, 本书是一本介绍如何用Python进行数据分析的学习指南。全书共12章,从Python程序库入门、NumPy数组、matplotlib和pandas开始,陆续介绍了数据加工、数据处理和数据可视化等内容。同时,本书还介绍了信号处理、数据库、文本分析、机器学习、互操作性和性能优化等高级主题。在本书的结尾,还采用3个附录的形式为读者补充了一些重要概念、常用函数以及在线资源等重要内容。, 本书示例丰富、简单易懂,非常适合对Python语言感兴趣或者想要使用Python语言进行数据分析的读者参考阅读。(python data analysis)

文件列表:

3358OS_Code, 0 , 2014-10-24
3358OS_Code\3358OS_01_Code, 0 , 2014-10-24
3358OS_Code\3358OS_01_Code\code1, 0 , 2014-10-24
3358OS_Code\3358OS_01_Code\code1\vectorsum.py, 1148 , 2014-05-04
3358OS_Code\3358OS_02_Code, 0 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code, 0 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2, 0 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\arrayattributes.py, 587 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\arrayattributes2.py, 2016 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\arrayconversion.py, 1264 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\boolean_indexing.py, 545 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\broadcasting.py, 731 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\charcodes.py, 399 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\copy_view.py, 386 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\dtypeattributes.py, 344 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\dtypeattributes2.py, 340 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\dtypeconstructors.py, 488 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\elementselection.py, 396 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\fancy.py, 503 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\ix.py, 479 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\numericaltypes.py, 772 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\shapemanipulation.py, 1350 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\slicing1d.py, 599 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\splitting.py, 1707 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\stacking.py, 2817 , 2014-10-24
3358OS_Code\3358OS_03_Code, 0 , 2014-10-24
3358OS_Code\3358OS_03_Code\3358OS_03_Code, 0 , 2014-10-24
3358OS_Code\3358OS_03_Code\3358OS_03_Code\basic_stats.py, 517 , 2014-05-10
3358OS_Code\3358OS_03_Code\3358OS_03_Code\eigenvalues.py, 384 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\goog_flutrends.csv, 7549 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\headortail.py, 441 , 2014-09-09
3358OS_Code\3358OS_03_Code\3358OS_03_Code\inversion.py, 201 , 2014-09-09
3358OS_Code\3358OS_03_Code\3358OS_03_Code\masked.py, 589 , 2014-10-15
3358OS_Code\3358OS_03_Code\3358OS_03_Code\masked_funcs.py, 778 , 2014-09-09
3358OS_Code\3358OS_03_Code\3358OS_03_Code\mdrtb_2012.csv, 3337 , 2014-05-10
3358OS_Code\3358OS_03_Code\3358OS_03_Code\MLB2008.csv, 7136 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\normaldist.py, 304 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\normality_test.py, 806 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\pkg_check.py, 839 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\solution.py, 190 , 2014-05-11
3358OS_Code\3358OS_04_Code, 0 , 2014-10-24
3358OS_Code\3358OS_04_Code\code4, 0 , 2014-10-24
3358OS_Code\3358OS_04_Code\code4\data_aggregation.py, 843 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\date_handling.py, 757 , 2014-05-30
3358OS_Code\3358OS_04_Code\code4\dest.csv, 47 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\df_demo.py, 261 , 2014-05-18
3358OS_Code\3358OS_04_Code\code4\join_demo.py, 913 , 2014-05-20
3358OS_Code\3358OS_04_Code\code4\missing_values.py, 498 , 2014-05-21
3358OS_Code\3358OS_04_Code\code4\pivot_demo.py, 493 , 2014-06-11
3358OS_Code\3358OS_04_Code\code4\pkg_check.py, 664 , 2014-06-10
3358OS_Code\3358OS_04_Code\code4\price_straddle.py, 677 , 2014-06-10
3358OS_Code\3358OS_04_Code\code4\query_demo.py, 704 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\series_demo.py, 621 , 2014-05-18
3358OS_Code\3358OS_04_Code\code4\stats_demo.py, 553 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\tips.csv, 28 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\WHO_first9cols.csv, 7776 , 2014-05-18
3358OS_Code\3358OS_05_Code, 0 , 2014-10-24
3358OS_Code\3358OS_05_Code\code5, 0 , 2014-10-24
3358OS_Code\3358OS_05_Code\code5\binary_formats.py, 563 , 2014-05-31
3358OS_Code\3358OS_05_Code\code5\hf5storage.py, 491 , 2014-06-01
3358OS_Code\3358OS_05_Code\code5\json_demo.py, 381 , 2014-06-02
3358OS_Code\3358OS_05_Code\code5\loremIpsum.html, 3623 , 2014-06-07
3358OS_Code\3358OS_05_Code\code5\pd_hdf.py, 597 , 2014-06-01
3358OS_Code\3358OS_05_Code\code5\pd_json.py, 410 , 2014-06-03
3358OS_Code\3358OS_05_Code\code5\pd_xls.py, 320 , 2014-06-01
3358OS_Code\3358OS_05_Code\code5\rss.py, 239 , 2014-06-03
3358OS_Code\3358OS_05_Code\code5\soup_request.py, 1056 , 2014-06-07
3358OS_Code\3358OS_05_Code\code5\writing_csv.py, 277 , 2014-05-31
3358OS_Code\3358OS_06_Code, 0 , 2014-10-24
3358OS_Code\3358OS_06_Code\code6, 0 , 2014-10-24
3358OS_Code\3358OS_06_Code\code6\autocorr_plot.py, 450 , 2014-06-16
3358OS_Code\3358OS_06_Code\code6\basic_plot.py, 137 , 2014-06-14
3358OS_Code\3358OS_06_Code\code6\gpu_transcount.csv, 483 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\lag_plot.py, 426 , 2014-06-16
3358OS_Code\3358OS_06_Code\code6\legend_annotations.py, 1097 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\log_plots.py, 373 , 2014-06-14
3358OS_Code\3358OS_06_Code\code6\pd_plotting.py, 478 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\pkg_check.py, 679 , 2014-06-14
3358OS_Code\3358OS_06_Code\code6\plot_ly.py, 714 , 2014-06-16
3358OS_Code\3358OS_06_Code\code6\scatter_plot.py, 579 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\three_dimensional.py, 735 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\transcount.csv, 1123 , 2014-06-14
3358OS_Code\3358OS_06_Code\__MACOSX, 0 , 2014-10-24
3358OS_Code\3358OS_06_Code\__MACOSX\code6, 0 , 2014-10-24
3358OS_Code\3358OS_06_Code\__MACOSX\code6\._gpu_transcount.csv, 120 , 2014-06-15
3358OS_Code\3358OS_06_Code\__MACOSX\code6\._transcount.csv, 120 , 2014-06-14
3358OS_Code\3358OS_07_Code, 0 , 2014-10-24
3358OS_Code\3358OS_07_Code\code7, 0 , 2014-10-24
3358OS_Code\3358OS_07_Code\code7\ar.py, 1350 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\arma.py, 506 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\autocorrelation.py, 540 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\cointegration.py, 695 , 2014-07-04
3358OS_Code\3358OS_07_Code\code7\filtering.py, 609 , 2014-07-06
3358OS_Code\3358OS_07_Code\code7\fourier.py, 898 , 2014-07-06
3358OS_Code\3358OS_07_Code\code7\iterate.dat, 3525 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\moving_average.py, 461 , 2014-07-04
3358OS_Code\3358OS_07_Code\code7\periodic.py, 1479 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\pkg_check.py, 678 , 2014-07-03
3358OS_Code\3358OS_07_Code\code7\spectrum.py, 547 , 2014-07-06
3358OS_Code\3358OS_07_Code\code7\window_functions.py, 551 , 2014-07-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • Social-Networks-PPT-a-R
    主要内容为R语言环境下的社交网络数据挖掘,附有源代码和数据,并包含案例所使用的PPT和相关文献。(The main content is under R locales social network data mining, with the source code and data, and includes cases PPT and related documentation used.)
    2020-11-25 11:19:32下载
    积分:1
  • YTCVI47
    徐士良《C常用算法程序集》第2版 第2部分()
    2018-02-05 12:36:49下载
    积分:1
  • 传递熵传递时间计算
    计算传递熵延迟时间的程序,根据延迟对应最大传递熵的原理(A program for calculating the delay time of transfer entropy)
    2017-11-28 09:13:45下载
    积分:1
  • speech noise reduction
    使用python实现谱减法对语音的降噪功能,代码包括语音的读取、降噪、输出保存(Spectral subtraction speech noise reduction python code)
    2018-06-27 17:22:04下载
    积分:1
  • kaggle叶子分类
    利用一维卷积神经网络将叶子进行分类,里面包含的有数据(Classification of leaves using one dimensional convolution neural network)
    2018-07-12 20:41:43下载
    积分:1
  • 一种信号的处理方法 SES
    说明:  一种信号的处理方法,用于非平稳的信号处理(A signal processing method for nonstationary signal processing)
    2020-07-13 08:18:52下载
    积分:1
  • 频繁项集算法
    频繁项集挖掘算法,能在大量局部特征中发现频繁空间配置,这些空间配置可以作为词语,加入到特征包中进行分类,实现图像分类。
    2022-03-23 21:38:47下载
    积分:1
  • LOF
    基于密度的局部离群点检测,使用于当全部样本点的密度不一致的情况(Local outlier detection based on density)
    2021-04-14 16:28:55下载
    积分:1
  • QB模型 神经网络
    说明:  从数据库获取车辆在一段时间内的所有行驶记录的相关数据,确定所需数据为GPS经纬度坐标和驾驶时长等,QB模型采用MDF的思想,其基本思想为:通过平均直接翻转距离函数定义两条轨迹之间的距离,两条轨迹需要具有相同的经纬度点数,具有相同点数的轨迹最大的优点是对轨迹距离成对计算,且相同轨迹之间具有更高的分辨率,对于轨迹聚类的结果有一定的优化。(Retrieved from the database cars all over a period of time, record the related data, determine the required data for the GPS latitude and longitude coordinates, and the driving time, QB model by adopting the idea of MDF, its basic idea is: flip directly by the average distance function definition of the distance between two trajectories, two tracks will have the same latitude and longitude points, and has the biggest advantages of the same points of trajectory track distance calculation in pairs, and has higher resolution, between the same trajectory for trajectory clustering results have certain optimization.)
    2020-06-23 08:00:01下载
    积分:1
  • degreeor
    复杂网络聚类系数的matlab编程代码,将复杂网络存储为矩阵,再对其matLab编程,可得到度分布图(The MATLAB programming code of clustering coefficient of complex network is used to store complex network as matrix, and then matLab programming is used to get the degree distribution graph.)
    2018-05-23 05:28:45下载
    积分:1
  • 696518资源总数
  • 104509会员总数
  • 10今日下载