登录
首页 » matlab » Localization

Localization

于 2016-09-24 发布 文件大小:1402KB
0 129
下载积分: 1 下载次数: 26

代码说明:

  WSN 经典定位算法 包括: Centoid, Bounding_box, Grid_Scan, RSSI, DV_hop, MDS_MAP,APIT-WSN(Centoid, Bounding_box, Grid_Scan, RSSI, DV_hop, MDS_MAP,APIT-WSN)

文件列表:

Localization
............\Amorphous
............\.........\Amorphous.m,3351,2016-09-24
............\APIT
............\....\APIT.m,4169,2016-09-24
............\....\PPIT.m,3889,2016-09-24
............\Bounding Box
............\............\Bounding_Box.m,2125,2016-09-24
............\............\Bounding_Box_second.m,2505,2016-09-24
............\............\Bounding_Box_third.m,2639,2016-09-24
............\Centroid
............\........\Centroid.m,2029,2016-09-24
............\........\Centroid_second.m,2341,2016-09-24
............\........\Centroid_third.m,2558,2016-09-24
............\Deploy Nodes
............\............\coordinates.mat,4960,2011-05-05
............\............\C_random.m,2127,2016-09-24
............\............\C_regular.m,3701,2016-09-24
............\............\Distribution_Of_WSN.m,1584,2016-09-24
............\............\Figures




............\............\readme.txt,4046,2010-05-15
............\............\square_random.m,1775,2016-09-24
............\............\square_regular.m,2778,2016-09-24
............\DV-hop
............\......\DV_hop.m,3007,2016-09-24
............\Grid Scan
............\.........\Grid_Scan.m,2184,2016-09-24
............\.........\Grid_Scan_second.m,2560,2016-09-24
............\.........\Grid_Scan_third.m,2762,2016-09-24
............\Localization Error
............\..................\calculate_localization_error.m,3081,2016-09-24
............\..................\result.mat,8653,2011-05-05
............\MDS-MAP
............\.......\Fig_Of_relativemap_absolute_map.m,1475,2016-09-24
............\.......\maps_and_all_nodes.mat,14288,2011-05-05
............\.......\MDS_MAP.m,3824,2016-09-24
............\.......\relative_to_absolute.m,989,2016-09-24
............\readme.txt,807,2010-05-15
............\RSSI
............\....\RSSI.m,2386,2016-09-24
............\....\RSSI_second.m,2780,2016-09-24
............\....\RSSI_third.m,2986,2016-09-24
............\....\新建 文本文档.txt,2949,2010-06-06
............\run.m,3139,2016-09-24
............\Topology Of WSN
............\...............\calculate_neighbor.m,3281,2016-09-24
............\...............\Figures

............\...............\neighbor.mat,669843,2011-05-05
............\...............\readme.txt,2614,2010-05-12
............\...............\Topology_Of_WSN.m,2196,2016-09-24
............\...............\Transmission Model
............\...............\..................\About Models.bmp
............\...............\..................\DOI Model
............\...............\..................\.........\dist2rss.m,1330,2010-05-11
............\...............\..................\.........\Research On This Model





............\...............\..................\.........\......................\Fig_Of_Model.m,1596,2010-05-05
............\...............\..................\.........\rss2dist.m,1333,2010-05-11
............\...............\..................\Logarithmic Attenuation Model
............\...............\..................\.............................\dist2rss.m,887,2010-05-11
............\...............\..................\.............................\Research On This Model

............\...............\..................\.............................\......................\Fig_Of_Model.m,2124,2010-05-11


............\...............\..................\.............................\rss2dist.m,973,2010-05-11
............\...............\..................\Models_Soln_RIM_TOSN.pdf,568699,2009-05-22
............\...............\..................\Parameters_Of_Models.mat,358,2010-05-11
............\...............\..................\readme.txt,1085,2010-05-11
............\...............\..................\Regular Model
............\...............\..................\.............\dist2rss.m,699,2010-05-11
............\...............\..................\.............\Research On This Model

............\...............\..................\.............\......................\Fig_Of_Model.m,550,2010-04-28

............\...............\..................\.............\rss2dist.m,705,2010-05-11
............\...............\..................\RIM Model
............\...............\..................\.........\dist2rss.m,801,2010-05-11
............\...............\..................\.........\Research Of This Model




............\...............\..................\.........\......................\Fig_Of_Model.m,1578,2010-05-05
............\...............\..................\.........\......................\readme.txt,107,2010-05-07
............\...............\..................\.........\rss2dist.m,894,2010-05-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • dwt
    基于DWT的数字水印嵌入算法,已进行过调试,可以直接使用(DWT-based digital watermarking algorithm, has been commissioning, can be used directly)
    2010-11-29 22:47:04下载
    积分:1
  • OFDM
    首先根据短训练字的特性进行相关运算,进行信号到达检测,当检测到相关值大于门限一定次数后,认为有信号到达。然后根据长训练字的特性,进行相关运算,进行OFDM符号FFT窗口起始位置的估计。估计出FFT窗口的位置后,先在时域进行小频偏的估计,将两个长训练字进行小频偏补偿后,进行FFT运算,根据FFT运算的结果进行整数倍频偏的估计。这些参数估计完成后,就可以进行数据解调了。先对数据部分进行完整的频偏补偿,然后根据估计的FFT窗口位置进行FFT运算得到频域的数据,进行解调。然后在对应于导频的子载波位置上提取出导频信息,根据导频信息估计出剩余定时误差以及剩余的信道响应误差,将误差量送入环路进行跟踪。当收到所有数据后,重新回到信号到达检测状态,进行下一次信号到达的检测和信号接收。(First, according to the characteristics of the short training word correlation operation, the signal reaching the detector, when the detected correlation value is greater than the threshold after a certain number of times that a signal arrives. And then the characteristics of long training word, the correlation operation for the FFT window starting position of an OFDM symbol estimate. The estimated position of the FFT window, the first small frequency offset in the time domain estimation, the two long training word small frequency offset compensation, the FFT operation, the FFT result of the operation for integer frequency offset estimate. These parameter estimation is completed, the data can be demodulated on. The first portion of the data for a complete frequency offset compensation, and based on the estimated FFT window position of the FFT operation to obtain frequency domain data, demodulated. Then corresponding to the position of the pilot subcarriers are extracted on pilot inform)
    2020-11-04 23:49:52下载
    积分:1
  • final
    Background subtraction -to extract the background information from the image. Segmentation is adopted here..
    2011-11-17 12:07:38下载
    积分:1
  • tang1
    用GUI做的图像处理平台一些算法的演示,包括图像去噪图像加密图像编码解码(the tool of image processing)
    2015-06-17 15:36:01下载
    积分:1
  • BP2
    能够实现合成孔径雷达的反向投影成像算法,距离向实现脉冲压缩,方位向实现相干叠加。(It can realize the backprojection imaging algorithm of synthetic aperture radar, realize pulse compression in range direction, and realize coherent superposition in azimuth.)
    2020-07-10 16:38:57下载
    积分:1
  • RSNA
    待辨识对象参数a=[1 -1.5 0.7] b=[1 0.5] 输入采用长度L=400的白噪声序列,输出 ,输入和输出数据均含不相关随机噪声,ρ(k)=1/k。利用上述递推公式,辨识系统参数。(To identify the object parameters a = [1-1.5 0.7] B = [1 0.5] Input the length L = 400 white noise sequence, the output, the input and output data are not related with random noise, ρ (k) = 1/k. Using the recursion formula, identification system parameters.)
    2012-12-28 16:21:16下载
    积分:1
  • _dSNRuQH7xeY9
    Physical Modeling in MATLAB
    2011-06-03 19:36:48下载
    积分:1
  • chap7
    《matlab应用大全》赵海滨编著,清华大学出版社,第七章主讲概率与数理统计(The application of matlab Zhao Haibin compiled, tsinghua university press, chapter 7 on the probability and mathematical statistics )
    2013-10-31 09:39:25下载
    积分:1
  • CSR-NFC-0.0.01
    CSR与NFC集合工具,NFC是只能适合复旦微的芯片,CSR适合ROM版本和FALSE版本(CSR and NFC collection tools, NFC is only suitable for fudan micro chips, CSR for ROM version and FALSE version)
    2015-02-02 11:48:20下载
    积分:1
  • matlab
    聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。所有资料中还是Andrew Ng介绍的明白。首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。初始化k个随机数据u1,u2,...,uk。这些xn和uk都是向量。根据下面两个公式迭代就能求出最终所有的u,这些u就是最终所有类的中心位置。(Clustering algorithm, not a classification algorithm. Classification algorithm is to give a figure, and then determine the data belonging to a specific class of good which category. Clustering algorithm is to give a lot of raw data, and then through the algorithm which has similar characteristics data together as a class. Here k-means clustering, is given in advance the number of classes contained in the raw data, then the data contain similar characteristics together as a class. All information presented in or Andrew Ng understand. Firstly, raw data {x1, x2, ..., xn}, the data is not labeled. K random initialization data u1, u2, ..., uk. These are the vectors xn and uk. According to the following two formulas can be obtained final iteration all u, u is the ultimate all these classes the center position.)
    2014-02-18 09:59:02下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载