-
GraphZoom
这是用matlab编写的图像缩放代码,能实现灰度或者彩色图像的放大缩小以及小数倍。使图像处理初学者的好材料(This is used to prepare the image scaling matlab code, to achieve gray scale or color images and small many times zoom. Image processing to make a good material for beginners)
- 2009-07-11 13:12:54下载
- 积分:1
-
deeplab V3和unet
说明: 利用全卷积神经网络,实现图像的语义分割,基于tensorflow的keras可以直接运行(Using the full convolutional neural network to achieve semantic segmentation of images, keras based on tensorflow can be run directly)
- 2019-05-31 22:03:57下载
- 积分:1
-
timesat302.part1
Timesat3.2,用于遥感影像的NDVI时间序列分析,提取物候参数。
(Timesat3.2, NDVI time series for the analysis of remote sensing images, extract phenological parameters.)
- 2017-03-21 09:09:22下载
- 积分:1
-
ps_selected_estGamma
PS处理过程中,利用迭代算法估计相干系数,并选取稳定点目标的算法实现。(PS process, using an iterative algorithm to estimate the coherence and stable point target algorithm)
- 2017-05-03 18:20:01下载
- 积分:1
-
book3e_2
说明: 冈萨雷斯版数字图像处理, 第三版配套代码,可参考(Gonzalez Digital Image Processing third edition supporting code)
- 2021-03-03 09:25:45下载
- 积分:1
-
SR-ridge
读入一副图片,提取其脊线(含有噪声,除噪声需另外编程实现)(Get the ridge of a picture (with noise))
- 2020-08-11 19:28:26下载
- 积分:1
-
pzernike
说明: 伪Zernike矩特征提取,Zernike矩特征提取,供参考,很有用(Pseudo-Zernike moment feature extraction, Zernike moment feature extraction, for reference, very useful)
- 2008-10-16 19:41:20下载
- 积分:1
-
harrisSAM
光谱角(Spectral Angle)衡量像素间的相关性存在着差异,本程序用于计算光谱角,及光谱角匹配(Spectral Angle (Spectral Angle) to measure the correlation between pixels there are differences, the process used to calculate the spectral angle, and spectral angle matching)
- 2020-11-05 19:19:50下载
- 积分:1
-
m_map
说明: m-map工具箱,可以帮助画图,比如世界地图的背景(M-map toolbox, can help draw pictures, such as the background of the world map)
- 2021-03-21 21:09:16下载
- 积分:1
-
demoBagSVM
一种基于半监督的svm的图像分类方法。该方法通过聚类核的方法利用无标记样本局部正则化训练核的表达式。这种方法通过图像直接学习一个自适应的核。该程序仿真的是文章:Semi-supervised Remote Sensing Image Classification with Cluster Kernels。大家可以参考下。(A semi-supervised SVM is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image, and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictionsds)
- 2013-09-03 10:44:56下载
- 积分:1