卷积神经网络
代码说明:
利用Python实现卷积神经网络,适合初学者借鉴,参考。(Using Python to realize convolution neural network is suitable for beginners to learn and refer to.)
文件列表:
caffe-recurrent-v4, 0 , 2015-09-04
caffe-recurrent-v4\.Doxyfile, 101863 , 2015-09-04
caffe-recurrent-v4\.gitignore, 1128 , 2015-09-04
caffe-recurrent-v4\.travis.yml, 1621 , 2015-09-04
caffe-recurrent-v4\CMakeLists.txt, 2361 , 2015-09-04
caffe-recurrent-v4\CONTRIBUTING.md, 1917 , 2015-09-04
caffe-recurrent-v4\CONTRIBUTORS.md, 620 , 2015-09-04
caffe-recurrent-v4\INSTALL.md, 197 , 2015-09-04
caffe-recurrent-v4\LICENSE, 2095 , 2015-09-04
caffe-recurrent-v4\Makefile, 21386 , 2015-09-04
caffe-recurrent-v4\Makefile.config.example, 3604 , 2015-09-04
caffe-recurrent-v4\README.md, 1924 , 2015-09-04
caffe-recurrent-v4\caffe.cloc, 1180 , 2015-09-04
caffe-recurrent-v4\cmake, 0 , 2015-09-04
caffe-recurrent-v4\cmake\ConfigGen.cmake, 4049 , 2015-09-04
caffe-recurrent-v4\cmake\Cuda.cmake, 9903 , 2015-09-04
caffe-recurrent-v4\cmake\Dependencies.cmake, 5222 , 2015-09-04
caffe-recurrent-v4\cmake\External, 0 , 2015-09-04
caffe-recurrent-v4\cmake\External\gflags.cmake, 1939 , 2015-09-04
caffe-recurrent-v4\cmake\External\glog.cmake, 1719 , 2015-09-04
caffe-recurrent-v4\cmake\Misc.cmake, 1764 , 2015-09-04
caffe-recurrent-v4\cmake\Modules, 0 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindAtlas.cmake, 1666 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindGFlags.cmake, 1545 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindGlog.cmake, 1451 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindLAPACK.cmake, 6723 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindLMDB.cmake, 1119 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindLevelDB.cmake, 1728 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindMKL.cmake, 3361 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindMatlabMex.cmake, 1749 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindNumPy.cmake, 2333 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindOpenBLAS.cmake, 1593 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindSnappy.cmake, 1071 , 2015-09-04
caffe-recurrent-v4\cmake\Modules\FindvecLib.cmake, 1304 , 2015-09-04
caffe-recurrent-v4\cmake\ProtoBuf.cmake, 3733 , 2015-09-04
caffe-recurrent-v4\cmake\Summary.cmake, 7249 , 2015-09-04
caffe-recurrent-v4\cmake\Targets.cmake, 7135 , 2015-09-04
caffe-recurrent-v4\cmake\Templates, 0 , 2015-09-04
caffe-recurrent-v4\cmake\Templates\CaffeConfig.cmake.in, 1736 , 2015-09-04
caffe-recurrent-v4\cmake\Templates\CaffeConfigVersion.cmake.in, 377 , 2015-09-04
caffe-recurrent-v4\cmake\Templates\caffe_config.h.in, 682 , 2015-09-04
caffe-recurrent-v4\cmake\Utils.cmake, 13288 , 2015-09-04
caffe-recurrent-v4\cmake\lint.cmake, 1505 , 2015-09-04
caffe-recurrent-v4\data, 0 , 2015-09-04
caffe-recurrent-v4\data\cifar10, 0 , 2015-09-04
caffe-recurrent-v4\data\cifar10\get_cifar10.sh, 504 , 2015-09-04
caffe-recurrent-v4\data\coco, 0 , 2015-09-04
caffe-recurrent-v4\data\coco\README.md, 793 , 2015-09-04
caffe-recurrent-v4\data\coco\download_eval_tools.sh, 454 , 2015-09-04
caffe-recurrent-v4\data\coco\download_tools.sh, 437 , 2015-09-04
caffe-recurrent-v4\data\coco\get_coco2014_aux.sh, 459 , 2015-09-04
caffe-recurrent-v4\data\coco\make_test.py, 1490 , 2015-09-04
caffe-recurrent-v4\data\coco\make_trainval.py, 2204 , 2015-09-04
caffe-recurrent-v4\data\ilsvrc12, 0 , 2015-09-04
caffe-recurrent-v4\data\ilsvrc12\get_ilsvrc_aux.sh, 582 , 2015-09-04
caffe-recurrent-v4\data\mnist, 0 , 2015-09-04
caffe-recurrent-v4\data\mnist\get_mnist.sh, 764 , 2015-09-04
caffe-recurrent-v4\docs, 0 , 2015-09-04
caffe-recurrent-v4\docs\CMakeLists.txt, 4532 , 2015-09-04
caffe-recurrent-v4\docs\CNAME, 25 , 2015-09-04
caffe-recurrent-v4\docs\README.md, 241 , 2015-09-04
caffe-recurrent-v4\docs\_config.yml, 131 , 2015-09-04
caffe-recurrent-v4\docs\_layouts, 0 , 2015-09-04
caffe-recurrent-v4\docs\_layouts\default.html, 2067 , 2015-09-04
caffe-recurrent-v4\docs\development.md, 6639 , 2015-09-04
caffe-recurrent-v4\docs\images, 0 , 2015-09-04
caffe-recurrent-v4\docs\images\GitHub-Mark-64px.png, 2625 , 2015-09-04
caffe-recurrent-v4\docs\images\caffeine-icon.png, 954 , 2015-09-04
caffe-recurrent-v4\docs\index.md, 6262 , 2015-09-04
caffe-recurrent-v4\docs\install_apt.md, 1793 , 2015-09-04
caffe-recurrent-v4\docs\install_osx.md, 6316 , 2015-09-04
caffe-recurrent-v4\docs\install_yum.md, 1730 , 2015-09-04
caffe-recurrent-v4\docs\installation.md, 7408 , 2015-09-04
caffe-recurrent-v4\docs\model_zoo.md, 4878 , 2015-09-04
caffe-recurrent-v4\docs\performance_hardware.md, 2533 , 2015-09-04
caffe-recurrent-v4\docs\stylesheets, 0 , 2015-09-04
caffe-recurrent-v4\docs\stylesheets\pygment_trac.css, 4168 , 2015-09-04
caffe-recurrent-v4\docs\stylesheets\reset.css, 602 , 2015-09-04
caffe-recurrent-v4\docs\stylesheets\styles.css, 4385 , 2015-09-04
caffe-recurrent-v4\docs\tutorial, 0 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\convolution.md, 683 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\data.md, 3496 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\fig, 0 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\fig\.gitignore, 0 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\fig\backward.jpg, 105017 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\fig\forward.jpg, 71957 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\fig\forward_backward.png, 57267 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\fig\layer.jpg, 54757 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\fig\logreg.jpg, 42966 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\forward_backward.md, 2461 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\index.md, 3220 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\interfaces.md, 14302 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\layers.md, 19086 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\loss.md, 2783 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\net_layer_blob.md, 13260 , 2015-09-04
caffe-recurrent-v4\docs\tutorial\solver.md, 18360 , 2015-09-04
caffe-recurrent-v4\examples, 0 , 2015-09-04
caffe-recurrent-v4\examples\00-classification.ipynb, 1120495 , 2015-09-04
caffe-recurrent-v4\examples\01-learning-lenet.ipynb, 390332 , 2015-09-04
caffe-recurrent-v4\examples\02-brewing-logreg.ipynb, 477118 , 2015-09-04
下载说明:请别用迅雷下载,失败请重下,重下不扣分!