登录
首页 » matlab » 聚类指标小结

聚类指标小结

于 2020-06-19 发布 文件大小:877KB
0 249
下载积分: 1 下载次数: 8

代码说明:

  聚类评价指标的各种说明,非常详细,请仔细阅读。(Cluster evaluation indicators of various descriptions, very detailed.)

文件列表:

聚类指标小结\EvaluationCalculate\references.txt, 497 , 2016-11-11
聚类指标小结\EvaluationCalculate\self_Evaluation.m, 2981 , 2016-11-11
聚类指标小结\EvaluationCalculate\test_Evaluation.m, 294 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering.htm, 32222 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\contents.png, 278 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\footnote.png, 190 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1191.png, 230 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1393.png, 9255 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1394.png, 1402 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1395.png, 674 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1396.png, 264 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1397.png, 250 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1398.png, 1446 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1399.png, 205 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1400.png, 446 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1401.png, 1642 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1402.png, 1479 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1403.png, 406 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1404.png, 381 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1405.png, 508 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1406.png, 410 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1407.png, 937 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1408.png, 852 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1409.png, 451 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1410.png, 362 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1411.png, 349 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1412.png, 750 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1413.png, 411 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1414.png, 389 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1415.png, 543 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1416.png, 926 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1417.png, 347 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1418.png, 1536 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1419.png, 154 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1420.png, 1729 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1421.png, 556 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1422.png, 284 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1423.png, 266 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1424.png, 379 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1425.png, 407 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1426.png, 392 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1427.png, 399 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1428.png, 248 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1429.png, 1123 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1430.png, 1694 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1431.png, 554 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1432.png, 656 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1433.png, 460 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1434.png, 498 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1435.png, 216 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img313.png, 128 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img317.png, 251 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img354.png, 216 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img521.png, 302 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img527.png, 330 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img529.png, 329 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img62.png, 258 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img855.png, 578 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\index.png, 246 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\irbook.htm, 315 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\next.png, 245 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\prev.png, 279 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\up.png, 211 , 2016-11-11
聚类指标小结\[2] 聚类评价指标 Rand Index,RI,Recall,Precision,F1 - lixuemei504的专栏 - 博客频道 - CSDN.NET.htm, 42996 , 2016-11-11
聚类指标小结\[3] 聚类的一些评价手段 - luoleicn的专栏 - 博客频道 - CSDN.NET.htm, 46837 , 2016-11-11
聚类指标小结\[4] 聚类结果的评估指标及其JAVA实现 - 一个人漫步走 - 博客频道 - CSDN.NET.htm, 64456 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客.htm, 200939 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0.gif, 693 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0.jpg, 22385 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\005uWm1Tjw8f25vhkymvnj313k13kq6q.jpg, 1441 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0_002.jpg, 13359 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\1.jpg, 2656 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\100.jpg, 3513 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\100_002.jpg, 5543 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\11.swf, 2465 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\117X12px.gif, 1160 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\145686.jpg, 4870 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\1_002.jpg, 1475 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20130808110619562.jpg, 3253 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20130808110942546.jpg, 3412 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20131207154559265.jpg, 2828 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\276304.jpg, 2283 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\276624.jpg, 1634 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\3ffda9c9gw1etm69r812dj205k05kdg5.jpg, 1839 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50.jpg, 2158 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_002.jpg, 1384 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_003.jpg, 1686 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_004.jpg, 1930 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\63392b03jw8eqrx5uilwlj20v90v7whp.jpg, 1429 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\a.htm, 108 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\alipay.png, 22874 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\bootstrap.css, 99554 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\bootstrap.js, 27828 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\btn-index.png, 3283 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\core.php, 2640 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\default.css, 2352 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\embed.css, 54355 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\embed.js, 63708 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\h.js, 22225 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\highlight.js, 30174 , 2016-11-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • sklearn-tree-BN-knn
    分类器的性能比较与调优: 使用scikit-learn 包中的tree,贝叶斯,knn,对数据进行模型训练,尽量了解其原理及运用。 使用不同分析三种分类器在实验中的性能比较,分析它们的特点。 本实验采用的数据集为house与segment。(Performance comparison and optimization of classifiers: We use tree, Bayesian and KNN in scikit-learnpackage to train the data model and try to understand its principle and application. The performances of three classifiers are compared and their characteristics are analyzed. The data set used in this experiment is house and segment.)
    2021-04-16 15:08:53下载
    积分:1
  • FDXD-CPML
    FDTD three-dimensional CPML
    2018-09-06 15:38:10下载
    积分:1
  • 雷达matlab仿真,波束形成,角度测量,跟踪等等
    说明:  波形设计算法,阵列信号处理等相关知识的介绍仿真等(Introduction and Simulation of waveform design algorithm, array signal processing and other related knowledge)
    2021-02-19 15:09:44下载
    积分:1
  • eyboi737
    基于P-Q分解法的快速潮流计算,可用于实际系统()
    2017-12-05 16:20:12下载
    积分:1
  • 关于大的相关论文
    关于大数据的论文,对稀疏表示分类有很大的帮助,希望对初学者哟帮助
    2022-02-06 00:21:30下载
    积分:1
  • 机器学习与R语言(machine_learning)
    机器学习与R语言(machine_learning)源代码下载,内含R语言实现机器学习算法和应用案例(Machine learning and R language (machine_learning) source code download, containing R language to implement machine learning algorithms and application cases)
    2020-09-26 17:17:47下载
    积分:1
  • python疫情可视化
    说明:  通过时事数据可视化系统,可以清楚地了解全球疫情分布的状况以及密度,以便做出相应的对策(Through the current affairs data visualization system, it is possible to clearly understand the distribution and density of the global epidemic in order to make corresponding countermeasures)
    2021-03-05 10:19:31下载
    积分:1
  • regress
    一个xgboost实现的回归模型预测,数据集来源于kaggle的taxi竞赛(Regression model prediction based on a xgboost implementation)
    2017-10-13 10:09:42下载
    积分:1
  • PCA
    说明:  一个用python实现的PCA算法,并且给了简易素材(A PCA algorithm implemented in python, and gave a simple material)
    2020-08-23 14:38:17下载
    积分:1
  • svm
    运用支持向量机对一组超宽带非视距信号识别(Support Vector Machine Signal Identification)
    2017-03-15 09:54:33下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载