登录
首页 » matlab » SCN_Matlab-master

SCN_Matlab-master

于 2016-06-27 发布 文件大小:2440KB
0 237
下载积分: 1 下载次数: 16

代码说明:

  深度神经网络,去模糊,超分辨重建,matlab代码。(Deep Networks for Image Super-Resolution with Sparse Prior)

文件列表:

SCN_Matlab-master
.................\data


.................\Demo_SR.m,1172,2016-04-05
.................\Demo_SR_Conv.m,1269,2016-04-05
.................\matconvnet
.................\..........\.gitattributes,119,2016-04-05
.................\..........\.gitignore,362,2016-04-05
.................\..........\.gitmodules,0,2016-04-05
.................\..........\htm" target=_blank>COPYING,735,2016-04-05
.................\..........\doc
.................\..........\...\blocks.tex,20209,2016-04-05
.................\..........\...\figures
.................\..........\...\.......\imnet.pdf,18884,2016-04-05
.................\..........\...\.......\pepper.pdf,702358,2016-04-05
.................\..........\...\.......\svg
.................\..........\...\.......\...\conv.svg,68592,2016-04-05
.................\..........\...\.......\...\convt.svg,65347,2016-04-05
.................\..........\...\fundamentals.tex,21296,2016-04-05
.................\..........\...\geometry.tex,16543,2016-04-05
.................\..........\...\impl.tex,16698,2016-04-05
.................\..........\...\intro.tex,18889,2016-04-05
.................\..........\...\Makefile,2071,2016-04-05
.................\..........\...\matconvnet-manual.tex,3773,2016-04-05
.................\..........\...\matdoc.py,7046,2016-04-05
.................\..........\...\matdocparser.py,11108,2016-04-05
.................\..........\...\references.bib,2729,2016-04-05
.................\..........\...\site
.................\..........\...\....\docs
.................\..........\...\....\....\about.md,4972,2016-04-05
.................\..........\...\....\....\css
.................\..........\...\....\....\...\fixes.css,863,2016-04-05
.................\..........\...\....\....\...\tables.css,1716,2016-04-05
.................\..........\...\....\....\developers.md,3392,2016-04-05
.................\..........\...\....\....\faq.md,1064,2016-04-05
.................\..........\...\....\....\functions.md,2587,2016-04-05
.................\..........\...\....\....\gpu.md,1095,2016-04-05
.................\..........\...\....\....\index.md,3131,2016-04-05
.................\..........\...\....\....\install-alt.md,3404,2016-04-05
.................\..........\...\....\....\install.md,7721,2016-04-05
.................\..........\...\....\....\js
.................\..........\...\....\....\..\mathjaxhelper.js,138,2016-04-05
.................\..........\...\....\....\..\toggle.js,191,2016-04-05
.................\..........\...\....\....\pretrained.md,8571,2016-04-05
.................\..........\...\....\....\quick.md,2556,2016-04-05
.................\..........\...\....\....\training.md,1047,2016-04-05
.................\..........\...\....\....\wrappers.md,9159,2016-04-05
.................\..........\...\....\mkdocs.yml,1833,2016-04-05
.................\..........\...\wrappers.tex,7100,2016-04-05
.................\..........\examples
.................\..........\........\cnn_cifar.m,4529,2016-04-05
.................\..........\........\cnn_cifar_init.m,2543,2016-04-05
.................\..........\........\cnn_cifar_init_nin.m,4930,2016-04-05
.................\..........\........\cnn_imagenet.m,6349,2016-04-05
.................\..........\........\cnn_imagenet_camdemo.m,1806,2016-04-05
.................\..........\........\cnn_imagenet_evaluate.m,2960,2016-04-05
.................\..........\........\cnn_imagenet_get_batch.m,3463,2016-04-05
.................\..........\........\cnn_imagenet_googlenet.m,831,2016-04-05
.................\..........\........\cnn_imagenet_init.m,13358,2016-04-05
.................\..........\........\cnn_imagenet_minimal.m,932,2016-04-05
.................\..........\........\cnn_imagenet_setup_data.m,7311,2016-04-05
.................\..........\........\cnn_imagenet_sync_labels.m,588,2016-04-05
.................\..........\........\cnn_mnist.m,3314,2016-04-05
.................\..........\........\cnn_mnist_dag.m,3786,2016-04-05
.................\..........\........\cnn_mnist_experiments.m,828,2016-04-05
.................\..........\........\cnn_mnist_init.m,2385,2016-04-05
.................\..........\........\cnn_train.m,14363,2016-04-05
.................\..........\........\cnn_train_dag.m,10207,2016-04-05
.................\..........\........\cnn_vgg_faces.m,931,2016-04-05
.................\..........\Makefile,8623,2016-04-05
.................\..........\Makefile.mex,793,2016-04-05
.................\..........\Makefile.nvcc,925,2016-04-05
.................\..........\matconvnet.sln,886,2016-04-05
.................\..........\matconvnet.vcxproj,8658,2016-04-05
.................\..........\matconvnet.vcxproj.filters,10956,2016-04-05
.................\..........\matconvnet.xcodeproj
.................\..........\....................\project.pbxproj,76099,2016-04-05
.................\..........\....................\project.xcworkspace
.................\..........\....................\...................\contents.xcworkspacedata,152,2016-04-05
.................\..........\....................\xcshareddata
.................\..........\....................\............\xcschemes
.................\..........\....................\............\.........\matconv CPU.xcscheme,2853,2016-04-05
.................\..........\....................\............\.........\matconv cuDNN.xcscheme,2865,2016-04-05
.................\..........\....................\............\.........\matconv GPU.xcscheme,2853,2016-04-05
.................\..........\matlab
.................\..........\......\%2Bdagnn
.................\..........\......\......\@DagNN
.................\..........\......\......\......\addLayer.m,1299,2016-04-05
.................\..........\......\......\......\DagNN.m,9223,2016-04-05
.................\..........\......\......\......\eval.m,4208,2016-04-05
.................\..........\......\......\......\fromSimpleNN.m,8666,2016-04-05
.................\..........\......\......\......\getVarReceptiveFields.m,3549,2016-04-05
.................\..........\......\......\......\getVarSizes.m,502,2016-04-05
.................\..........\......\......\......\initParams.m,763,2016-04-05
.................\..........\......\......\......\loadobj.m,1347,2016-04-05
.................\..........\......\......\......\move.m,793,2016-04-05
.................\..........\......\......\......\print.m,11333,2016-04-05
.................\..........\......\......\......\rebuild.m,3103,2016-04-05
.................\..........\......\......\......\removeLayer.m,528,2016-04-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • genetic_algorithm
    general genetic agorithm coding
    2009-06-02 22:28:09下载
    积分:1
  • envelope
    在一个时间片下实现对信号的包络线提取,已测试(To achieve the extraction of the envelope signal at the next time slice, tested)
    2014-09-11 09:26:10下载
    积分:1
  • NMF
    用matlab实现的基于非负矩阵分解NMF的聚类算法,已测试通过(NMF decomposition using clustering algorithm based on non-negative matrix matlab achieved, have been tested)
    2021-04-13 10:58:56下载
    积分:1
  • The-basis-of-the-FEM
    有限单元法基础(第2版) 配套Matlab源代码(The basis of the finite element method (2))
    2013-03-22 11:26:46下载
    积分:1
  • ChemicalProcessControlaFirstCoursewithMatlab
    This text deals exclusively with signal processing of digital data, although Chapter 1 briefly describes analog processes commonly found in medical devices. This text should be of interest to a broad spectrum of engineers, but it is written specifically for biomedical engineers (also known as bioengineers). Although the applications are different, the signal processing methodology used by biomedical engineers is identical to that used by other engineers such electrical and communications engineers. The major difference for biomedical engineers is in the level of understanding required for appropriate use of this technology. An electrical engineer may be required to expand or modify signal processing tools, while for biomedical engineers, signal processing techniques are tools to be used.
    2010-10-09 18:43:46下载
    积分:1
  • iode_tex
    MATLAB est un logiciel de calcul matriciel à syntaxe simple. Avec ses fonctions spécialisées, MATLAB peut être aussi considéré comme un langage de programmation adapté pour les problèmes scientifiques
    2014-09-15 20:44:08下载
    积分:1
  • my-code
    利用伯德图来证明DC-8飞机,在0.84Mach和10000m高空的俯仰运动稳定性。( This example is to demonstrate pitch motion tracking control by using Bode diagram with elevator inputs for the DC-8 at 0.84Mach and 10000m )
    2013-12-24 15:22:30下载
    积分:1
  • 单载波和OFDM信号的识别的matlab
    用高阶累积量做的单载波和OFDM信号的识别的matlab全部源代码。对做这方面研究的人绝对会有帮助。(Cumulant to do with single-carrier and OFDM signals recognition matlab full source code. For people who do research in this area will definitely help.)
    2010-11-05 11:03:50下载
    积分:1
  • Matlab-project
    roots -Polynomial roots Syntax r = roots(c) Description r = roots(c) returns a column vector whose elements are the roots of the polynomial c. Row vector c contains the coefficients of a polynomial, ordered in descending powers. If c has n+1 components, the polynomial it represents is . Tips Note the relationship of this function to p = poly(r), which returns a row vector whose elements are the coefficients of the polynomial. For vectors,roots and poly are inverse functions of each other, up to ordering, scaling, and roundoff error.
    2014-11-13 01:48:01下载
    积分:1
  • BLDC-Motor-Modelling-and-Control
    无刷直流电机Matlab/Simulink仿真(BLDC Simulink simulation)
    2014-05-01 22:09:17下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载