登录
首页 » matlab » SCN_Matlab-master

SCN_Matlab-master

于 2016-06-27 发布 文件大小:2440KB
0 107
下载积分: 1 下载次数: 16

代码说明:

  深度神经网络,去模糊,超分辨重建,matlab代码。(Deep Networks for Image Super-Resolution with Sparse Prior)

文件列表:

SCN_Matlab-master
.................\data


.................\Demo_SR.m,1172,2016-04-05
.................\Demo_SR_Conv.m,1269,2016-04-05
.................\matconvnet
.................\..........\.gitattributes,119,2016-04-05
.................\..........\.gitignore,362,2016-04-05
.................\..........\.gitmodules,0,2016-04-05
.................\..........\htm" target=_blank>COPYING,735,2016-04-05
.................\..........\doc
.................\..........\...\blocks.tex,20209,2016-04-05
.................\..........\...\figures
.................\..........\...\.......\imnet.pdf,18884,2016-04-05
.................\..........\...\.......\pepper.pdf,702358,2016-04-05
.................\..........\...\.......\svg
.................\..........\...\.......\...\conv.svg,68592,2016-04-05
.................\..........\...\.......\...\convt.svg,65347,2016-04-05
.................\..........\...\fundamentals.tex,21296,2016-04-05
.................\..........\...\geometry.tex,16543,2016-04-05
.................\..........\...\impl.tex,16698,2016-04-05
.................\..........\...\intro.tex,18889,2016-04-05
.................\..........\...\Makefile,2071,2016-04-05
.................\..........\...\matconvnet-manual.tex,3773,2016-04-05
.................\..........\...\matdoc.py,7046,2016-04-05
.................\..........\...\matdocparser.py,11108,2016-04-05
.................\..........\...\references.bib,2729,2016-04-05
.................\..........\...\site
.................\..........\...\....\docs
.................\..........\...\....\....\about.md,4972,2016-04-05
.................\..........\...\....\....\css
.................\..........\...\....\....\...\fixes.css,863,2016-04-05
.................\..........\...\....\....\...\tables.css,1716,2016-04-05
.................\..........\...\....\....\developers.md,3392,2016-04-05
.................\..........\...\....\....\faq.md,1064,2016-04-05
.................\..........\...\....\....\functions.md,2587,2016-04-05
.................\..........\...\....\....\gpu.md,1095,2016-04-05
.................\..........\...\....\....\index.md,3131,2016-04-05
.................\..........\...\....\....\install-alt.md,3404,2016-04-05
.................\..........\...\....\....\install.md,7721,2016-04-05
.................\..........\...\....\....\js
.................\..........\...\....\....\..\mathjaxhelper.js,138,2016-04-05
.................\..........\...\....\....\..\toggle.js,191,2016-04-05
.................\..........\...\....\....\pretrained.md,8571,2016-04-05
.................\..........\...\....\....\quick.md,2556,2016-04-05
.................\..........\...\....\....\training.md,1047,2016-04-05
.................\..........\...\....\....\wrappers.md,9159,2016-04-05
.................\..........\...\....\mkdocs.yml,1833,2016-04-05
.................\..........\...\wrappers.tex,7100,2016-04-05
.................\..........\examples
.................\..........\........\cnn_cifar.m,4529,2016-04-05
.................\..........\........\cnn_cifar_init.m,2543,2016-04-05
.................\..........\........\cnn_cifar_init_nin.m,4930,2016-04-05
.................\..........\........\cnn_imagenet.m,6349,2016-04-05
.................\..........\........\cnn_imagenet_camdemo.m,1806,2016-04-05
.................\..........\........\cnn_imagenet_evaluate.m,2960,2016-04-05
.................\..........\........\cnn_imagenet_get_batch.m,3463,2016-04-05
.................\..........\........\cnn_imagenet_googlenet.m,831,2016-04-05
.................\..........\........\cnn_imagenet_init.m,13358,2016-04-05
.................\..........\........\cnn_imagenet_minimal.m,932,2016-04-05
.................\..........\........\cnn_imagenet_setup_data.m,7311,2016-04-05
.................\..........\........\cnn_imagenet_sync_labels.m,588,2016-04-05
.................\..........\........\cnn_mnist.m,3314,2016-04-05
.................\..........\........\cnn_mnist_dag.m,3786,2016-04-05
.................\..........\........\cnn_mnist_experiments.m,828,2016-04-05
.................\..........\........\cnn_mnist_init.m,2385,2016-04-05
.................\..........\........\cnn_train.m,14363,2016-04-05
.................\..........\........\cnn_train_dag.m,10207,2016-04-05
.................\..........\........\cnn_vgg_faces.m,931,2016-04-05
.................\..........\Makefile,8623,2016-04-05
.................\..........\Makefile.mex,793,2016-04-05
.................\..........\Makefile.nvcc,925,2016-04-05
.................\..........\matconvnet.sln,886,2016-04-05
.................\..........\matconvnet.vcxproj,8658,2016-04-05
.................\..........\matconvnet.vcxproj.filters,10956,2016-04-05
.................\..........\matconvnet.xcodeproj
.................\..........\....................\project.pbxproj,76099,2016-04-05
.................\..........\....................\project.xcworkspace
.................\..........\....................\...................\contents.xcworkspacedata,152,2016-04-05
.................\..........\....................\xcshareddata
.................\..........\....................\............\xcschemes
.................\..........\....................\............\.........\matconv CPU.xcscheme,2853,2016-04-05
.................\..........\....................\............\.........\matconv cuDNN.xcscheme,2865,2016-04-05
.................\..........\....................\............\.........\matconv GPU.xcscheme,2853,2016-04-05
.................\..........\matlab
.................\..........\......\%2Bdagnn
.................\..........\......\......\@DagNN
.................\..........\......\......\......\addLayer.m,1299,2016-04-05
.................\..........\......\......\......\DagNN.m,9223,2016-04-05
.................\..........\......\......\......\eval.m,4208,2016-04-05
.................\..........\......\......\......\fromSimpleNN.m,8666,2016-04-05
.................\..........\......\......\......\getVarReceptiveFields.m,3549,2016-04-05
.................\..........\......\......\......\getVarSizes.m,502,2016-04-05
.................\..........\......\......\......\initParams.m,763,2016-04-05
.................\..........\......\......\......\loadobj.m,1347,2016-04-05
.................\..........\......\......\......\move.m,793,2016-04-05
.................\..........\......\......\......\print.m,11333,2016-04-05
.................\..........\......\......\......\rebuild.m,3103,2016-04-05
.................\..........\......\......\......\removeLayer.m,528,2016-04-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Nonlinear-equations-to-solve
    非线性方程组的解法,三个方程式三个未知量,利用matlab来求解(Solution of nonlinear equations, three equations for three unknown quantities, can be solved by using matlab )
    2013-04-10 19:43:32下载
    积分:1
  • eulers-method
    用欧拉方法计算二阶常微分方法。。。。。。。。。。。(computing two order ODE by euler s method....................)
    2011-11-30 16:56:44下载
    积分:1
  • LMaFit-b2
    递秩矩阵拟合,Matrix Completion ,Sparse Matrix Separation ,Matrix Compressive Sensing (Low-rank Matrix Fitting)
    2009-11-07 21:13:05下载
    积分:1
  • geodetic
    gps geodetic convert for matlab
    2009-07-15 01:34:03下载
    积分:1
  • blind-single-sapration
    说明:  分离不同频率的五个信号源,采用自然梯度算法(Natural gradient algorithm for blind signal separation)
    2011-03-24 20:45:21下载
    积分:1
  • zishiingkongzhi
    自适应控制的东西,看看吧好东西的,喜欢吧谢谢了(adaptive control of things, good things, let's see it, a thank you like it?)
    2006-06-01 23:43:05下载
    积分:1
  • hrrp
    一维距离像 雷达一维距离像程序,用于目标型号识别(One dimensional range profile)
    2021-01-13 19:58:49下载
    积分:1
  • 2D-Navier-Stokes
    Flow to compute the incompressible flow in a lid driven cavity
    2014-02-14 21:14:17下载
    积分:1
  • qaosang
    小波包分析提取振动信号中的特征频率,实现串口的数据采集,已经调试成功.内含m文件,可直接运行。( Wavelet packet analysis to extract vibration signal characteristic frequency, Achieve serial data acquisition, Has been successful debugging. M contains files can be directly run.)
    2017-01-21 20:21:44下载
    积分:1
  • jktrans
    J-K变换器综合滤波器各级K值对应的散射矩阵的S参数对应值-适合做射频微波领域滤波器的相关人士使用(S parameter corresponds to the value of the J-K converter integrated filter K values at all levels of the corresponding scattering matrix- stakeholders suitable for RF and microwave filters using field )
    2016-06-15 11:36:45下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载