登录
首页 » matlab » MFCC_Coding_Demo2

MFCC_Coding_Demo2

于 2019-05-01 发布 文件大小:163KB
0 154
下载积分: 1 下载次数: 0

代码说明:

  characteristic parameters for speech recognition on the extraction function

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • lbg_vq
    LBG-vector quantization algorithm
    2013-04-25 09:00:17下载
    积分:1
  • procalltest
    基于matlab的语言情感识别仿真,可以实现用户注册,识别使用者说话时的喜怒哀乐等情感,人数少时可以实现很高的准确率。(Emotion Recognition based on Matlab language simulation, you can implement user registration, the number of emotions such as feelings, identify the user to speak came from a high accuracy can be achieved.)
    2012-07-07 00:40:13下载
    积分:1
  • speakercode1
    Speaker Identification using MFCC feature and VQ training, very clear MATLAB code
    2009-06-08 01:00:28下载
    积分:1
  • dtw
    本资料是自己编写的基于MATLAB语音工具箱的DTW动态时间规整的说话人识别,具有很高的识别率(This information is written in their own voice-based MATLAB toolbox DTW dynamic time warping speaker recognition with high recognition rate)
    2010-03-03 14:34:17下载
    积分:1
  • LMS
    LMS算法多麦克风语音降噪,语音降噪处理,基于matlab(LMS algorithm for multi-microphone speech noise reduction, voice, noise reduction, based on matlab)
    2020-07-04 18:40:06下载
    积分:1
  • fpga_shiyanjiaocheng
    关于如何使用fpga实现语音识别 最新版本(err)
    2007-12-28 15:34:32下载
    积分:1
  • HMM_GMM
    一个有效的,可以直接运行的HMM—GMM代码,而且带有语音数据。不存在任何障碍,值得初学者下载的浅显易懂的例子。(An effective, the HMM-GMM code that can be run directly, and with the voice data. There are no obstacles, beginners should download easy to understand examples.)
    2012-12-16 00:09:34下载
    积分:1
  • synsize1
    进行语音合成和分析,最基本的数据来源和可靠合成基础(Speech synthesis and analysis, basic data sources and reliable synthetic base)
    2012-11-02 20:41:58下载
    积分:1
  • negentropy
    基于负熵的盲源分离算法,可以用于语音的盲分离,提高语音信号质量(Negative entropy algorithm based on blind source separation, can be used to blind separation of speech, improve the quality of voice signal)
    2020-06-30 11:20:02下载
    积分:1
  • speech-emotion-recognition-system
    gmm模型下的语音情感识别系统,GMM只是一个数学模型,只是对数据形态的拟和,但是和你所看到的数据分布存在出入也是正常的,因为用EM估计GMM的那些参数时,一般假设我们所得到的数据是不完备的(也就是说假设我们看到的数据分布不是真正的分布,它在运算时把那部分丢失或者叫隐藏的数据“补”上了)(gmm model speech emotion recognition system, GMM is a mathematical model, but fitting the data form, but you can see there is access to the data distribution is normal, because those with the EM estimated GMM parameters, the general assumption we get the data is incomplete (that is, assuming we see the distribution of the data distribution is not real, it is part of the operation at the time that is lost or hidden data is called " fill" on the))
    2011-04-27 09:02:20下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载