登录
首页 » WINDOWS » DataApplicationCompanionGuide

DataApplicationCompanionGuide

于 2019-04-20 发布 文件大小:493KB
0 100
下载积分: 1 下载次数: 0

代码说明:

  Data Application Companion Guide

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • C++性能优化指南
    说明:  C++性能优化指南 (带目录高清版),pdf版本(C ++ Performance Optimization Guide (with catalog HD version), pdf)
    2019-12-11 17:42:12下载
    积分:1
  • 英文文本信息熵的计算
    说明:  实用C++计算一篇英文文本的信息熵 1、 读取文档,统计英文字母及空格出现的次数; (将小写字母转为大写字母进行计数) 2、 求概率分布P(X); 3、 根据定义求信息熵。(Computing the information entropy of an English text with C + + 1. Read the document and count the number of English letters and spaces; (convert lowercase letters to uppercase letters for counting) 2. Calculate the probability distribution P (x); 3. According to the definition of entropy.)
    2020-10-04 09:41:10下载
    积分:1
  • 迷宫问题的算法(优于广度优先,深度优先
    迷宫问题的算法(优于广度优先,深度优先-maze of algorithm (priority than breadth, depth priority
    2022-06-15 11:22:11下载
    积分:1
  • 这是使用PHP编程的虚拟社区MySQL的简易版
    这是使用PHP编程的虚拟社区MySQL的简易版-This is the use of PHP Programming Virtual Community simple version of MySQL
    2022-04-18 11:48:24下载
    积分:1
  • 弹性流体动压润滑 数值计算方法(代码)
    点接触,线接触弹流润滑程序,轴承齿轮弹流数值计算程序,黄平(Point contact, linear contact elastohydrodynamic lubrication program, bearing gear Elastohydrodynamic numerical calculation program, Huang Ping)
    2021-04-14 18:28:55下载
    积分:1
  • Go语言开发教程--完整版
    一本go 语言的开发书, 零基础, 从环境安装到go 网络 库使用.(A go language development book, zero basis, from environment installation to go network library.)
    2018-08-30 17:03:51下载
    积分:1
  • ab
    说明:  thanks for you registered new account in Your password
    2019-03-30 01:57:51下载
    积分:1
  • 相似度
    说明:  VB小工具检测两段文字的相似度是否》50%(visual basic check two word)
    2020-06-22 14:20:02下载
    积分:1
  • inet-3.0.0-src.tgz
    inet is library in omnetpp
    2019-06-10 02:41:30下载
    积分:1
  • kaggle_diabetic-master
    说明:  A commented bash script to generate our final 2nd place solution can be found in make_kaggle_solution.sh. Running all the commands sequentially will probably take 7 - 10 days on recent consumer grade hardware. If you have multiple GPUs you can speed things up by doing training and feature extraction for the two networks in parallel. However, due to the computationally heavy data augmentation it may be far less than twice as fast especially when working with 512x512 pixel input images. You can also obtain a quadratic weighted kappa score of 0.839 on the private leaderboard by just training the 4x4 kernel networks and by performing only 20 feature extraction iterations with the weights that gave you the best MSE validation scores during training. The entire ensemble only achieves a slightly higher score of 0.845.
    2019-05-11 15:31:21下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载