登录
首页 » matlab » k-means+BOF

k-means+BOF

于 2020-11-28 发布 文件大小:11408KB
0 112
下载积分: 1 下载次数: 14

代码说明:

  提取sift特征,通过K均值聚类形成特征包,进行图像检索。(SIFT features are extracted and image packets are retrieved through K mean clustering.)

文件列表:

k-means%2BBOF, 0 , 2018-05-14
k-means%2BBOF\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\do_demo.m, 1517 , 2018-04-19
k-means%2BBOF\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\do_eucidean_distance.m, 304 , 2016-04-13
k-means%2BBOF\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\get_countVectors.m, 676 , 2016-04-13
k-means%2BBOF\get_sifts.m, 713 , 2016-04-13
k-means%2BBOF\get_singleVector.m, 460 , 2016-04-13
k-means%2BBOF\img_paths.txt, 4447 , 2018-04-19
k-means%2BBOF\K_Means.m, 839 , 2016-04-13
k-means%2BBOF\SIFT_feature, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\._.DS_Store, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_database.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_descriptor.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\._do_sift.m, 4096 , 2015-10-07
k-means%2BBOF\SIFT_feature\.DS_Store, 6148 , 2015-09-02
k-means%2BBOF\SIFT_feature\demo-data, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\demo-data\1.jpg, 5524 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\2.jpg, 5571 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\5.jpg, 35129 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\6.jpg, 34931 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\7.jpg, 9539 , 2012-10-17
k-means%2BBOF\SIFT_feature\demo-data\beaver11.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\beaver13.bmp, 189956 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\einstein.pgm, 65596 , 2012-08-15
k-means%2BBOF\SIFT_feature\demo-data\GML_RANSAC_Matlab_Toolbox_0[1].2.rar, 19215 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\harrisandransac.rar, 446099 , 2015-08-19
k-means%2BBOF\SIFT_feature\demo-data\image068.JPG, 14060 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image069.JPG, 13579 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\image1.jpg, 240943 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image10.jpg, 63924 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image11.jpg, 145849 , 2015-08-21
k-means%2BBOF\SIFT_feature\demo-data\image2.jpg, 393897 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image3.jpg, 613687 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image4.jpg, 659244 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image5.jpg, 403386 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image6.jpg, 36967 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image7.jpg, 48612 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\image8.jpg, 92051 , 2015-08-18
k-means%2BBOF\SIFT_feature\demo-data\replace1.jpg, 2466289 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\replace2.jpg, 2812145 , 2013-07-01
k-means%2BBOF\SIFT_feature\demo-data\view01.png, 578897 , 2012-09-27
k-means%2BBOF\SIFT_feature\demo-data\view02.png, 574557 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_database.m, 30791 , 2015-09-30
k-means%2BBOF\SIFT_feature\do_descriptor.m, 6482 , 2015-08-27
k-means%2BBOF\SIFT_feature\do_diffofg.m, 464 , 2012-09-27
k-means%2BBOF\SIFT_feature\do_extrefine.m, 4368 , 2012-11-05
k-means%2BBOF\SIFT_feature\do_gaussian.m, 3029 , 2012-10-26
k-means%2BBOF\SIFT_feature\do_localmax.m, 2261 , 2012-11-13
k-means%2BBOF\SIFT_feature\do_orientation.m, 2765 , 2015-08-22
k-means%2BBOF\SIFT_feature\do_sift.m, 4493 , 2015-10-09
k-means%2BBOF\SIFT_feature\smooth.m, 243 , 2012-11-13
k-means%2BBOF\SIFT_feature\util, 0 , 2018-05-14
k-means%2BBOF\SIFT_feature\util\appendimages.m, 359 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotsiftframe.m, 1812 , 2012-09-27
k-means%2BBOF\SIFT_feature\util\plotss.m, 640 , 2015-07-31
k-means%2BBOF\SIFT_feature\util\tightsubplot.m, 1859 , 2012-09-27
k-means%2BBOF\smooth.m, 243 , 2012-11-13
k-means%2BBOF\sourcePictures, 0 , 2018-05-14
k-means%2BBOF\sourcePictures\1.jpg, 18138 , 2018-04-14
k-means%2BBOF\sourcePictures\10.jpg, 9506 , 2018-04-14
k-means%2BBOF\sourcePictures\100.jpg, 9568 , 2018-04-15
k-means%2BBOF\sourcePictures\101.jpg, 15883 , 2018-04-15
k-means%2BBOF\sourcePictures\102.jpg, 5979 , 2018-04-15
k-means%2BBOF\sourcePictures\103.jpg, 4686 , 2018-04-15
k-means%2BBOF\sourcePictures\104.jpg, 24421 , 2018-04-15
k-means%2BBOF\sourcePictures\105.jpg, 25652 , 2018-04-15
k-means%2BBOF\sourcePictures\106.jpg, 9463 , 2018-04-15
k-means%2BBOF\sourcePictures\107.jpg, 19874 , 2018-04-15
k-means%2BBOF\sourcePictures\108.jpg, 5267 , 2018-04-15
k-means%2BBOF\sourcePictures\109.jpg, 18393 , 2018-04-15
k-means%2BBOF\sourcePictures\11.jpg, 6031 , 2018-04-14
k-means%2BBOF\sourcePictures\110.jpg, 5664 , 2018-04-15
k-means%2BBOF\sourcePictures\12.jpg, 7202 , 2018-04-14
k-means%2BBOF\sourcePictures\13.jpg, 5459 , 2018-04-14
k-means%2BBOF\sourcePictures\14.jpg, 16511 , 2018-04-14
k-means%2BBOF\sourcePictures\15.jpg, 16722 , 2018-04-14
k-means%2BBOF\sourcePictures\16.jpg, 17399 , 2018-04-14
k-means%2BBOF\sourcePictures\17.jpg, 18570 , 2018-04-14
k-means%2BBOF\sourcePictures\18.jpg, 21290 , 2018-04-14
k-means%2BBOF\sourcePictures\19.jpg, 8726 , 2018-04-14
k-means%2BBOF\sourcePictures\2.jpg, 18123 , 2018-04-14
k-means%2BBOF\sourcePictures\20.jpg, 15315 , 2018-04-14
k-means%2BBOF\sourcePictures\21.jpg, 16620 , 2018-04-14
k-means%2BBOF\sourcePictures\22.jpg, 10571 , 2018-04-14
k-means%2BBOF\sourcePictures\23.jpg, 3279 , 2018-04-14
k-means%2BBOF\sourcePictures\24.jpg, 15179 , 2018-04-14
k-means%2BBOF\sourcePictures\25.jpg, 4237 , 2018-04-14
k-means%2BBOF\sourcePictures\26.jpg, 16937 , 2018-04-14
k-means%2BBOF\sourcePictures\27.jpg, 8714 , 2018-04-14
k-means%2BBOF\sourcePictures\28.jpg, 6136 , 2018-04-14
k-means%2BBOF\sourcePictures\29.jpg, 30527 , 2018-04-14
k-means%2BBOF\sourcePictures\3.jpg, 16845 , 2018-04-14
k-means%2BBOF\sourcePictures\30.jpg, 31940 , 2018-04-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • homework4
    编制通用的二值形态学运算(腐蚀和膨胀、开、闭和击中击不中变换)函数,函数可以处理不同的变换形式和不同类型的结构元素。并用你编制的形态学函数对一个二值图象进行处理。 用形态学击中击不中变换方法对图象进行细化处理。 实验图象:二值图象由一段文字组成,word_bw.bmp (The preparation of binary morphological operations (erosion and dilation, opening, closing and hit-miss transform) function, the function can handle the transformation of different forms and different types of structural elements. You prepared in morphology function of a binary image. Morphological hit-miss transform method of image refinement process. Experimental images: binary image by a paragraph of text, word_bw.bmp)
    2012-06-30 10:24:02下载
    积分:1
  • hog-feature
    HOG(方向梯度直方图)图像特征提取,以lena图像作为示例(HOG (Histogram of Oriented Gradients) image feature extraction, image as an example to lena)
    2014-02-25 17:20:58下载
    积分:1
  • particle-filter
    粒子滤波算法,综述,学习文档以及算法程序,包括PF,EKPF,UKPF,以及不同的重采样方法(This file is about algorithm of particle filtering, including codes and tutorial.)
    2021-04-27 10:28:44下载
    积分:1
  • 白平衡代码
    说明:  几个白平衡程序,都能运行出来,可以用于水下图像偏绿偏蓝现象的颜色调整(Several white balance programs can be run)
    2020-11-25 14:49:38下载
    积分:1
  • matlabtuxiangfenge
    图像分割,包括阈值分割Otsu法,边缘检测包括Roberts算子,Canny算子等,边界跟踪包括Bwtraceboundary函数调用来对图像进行分割等(Image segmentation, including threshold segmentation method of Otsu edge detection, including Roberts operator, Canny operator, edge tracking includes Bwtraceboundary function calls to the segmentation of the image)
    2020-10-29 16:49:57下载
    积分:1
  • curvlab
    本程序用于CurveLab-2.0水印技术的处理.(the procedures for CurveLab-2.0 watermarking technology management.)
    2007-05-30 09:40:58下载
    积分:1
  • Image fusion
    采用了小波变换的方法实现了红外光图像与可见光图像的融合,并且设计了一个简单的matlab GUI界面。小波变换的分解层数为2层,采用低频平均高频取大的融合规则,融合效果非常欢迎下载。(The method of wavelet transform is used to realize the fusion of infrared and visible light images, and a simple matlab GUI interface is designed. The number of decomposition layers of the wavelet transform is 2 layers, and the fusion rule is adopted by the low frequency average high frequency. The fusion effect is very welcome to download.)
    2020-12-23 11:09:06下载
    积分:1
  • ksvdsbox11-min
    KSVD字典训练程序,用于生成适应于图像内容的稀疏字典。稀疏描述必读程序。(KSVD dictionary training program used to generate a sparse dictionary adapted to image content. Sparse description of the Privacy Policy program.)
    2012-08-16 16:42:23下载
    积分:1
  • testa2
    从串口实时采集数据,读取家速度传感器的值,并且显示波形(Real-time collection of data from the serial port, read the value of home speed sensor, and display the waveform)
    2011-11-20 12:52:48下载
    积分:1
  • kuaipipei
    基于亚像素运动估计算法的块匹配运动,有源码跟参考文献,初学的小伙伴可以看看(Block-matching motion estimation algorithm based sub-pixel motion, there is source code with references, beginner can look at a small partner)
    2020-08-10 15:18:30下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载