登录
首页 » matlab » SNS_matlab-master

SNS_matlab-master

于 2021-05-14 发布 文件大小:12485KB
0 179
下载积分: 1 下载次数: 2

代码说明:

  图像重定向源代码,本文提出一种网格变形框架,允许显著特征进行均匀缩放,从而保证图像内容的完整性,将变形分布到不重要的区域。(The source code of optimal scale stretching image redirection is presented, and an effective image redirection algorithm is proposed to better guarantee the integrity of the image.)

文件列表:

SNS_matlab-master, 0 , 2018-10-24
SNS_matlab-master\Brasserie_L_Aficion.png, 1056989 , 2016-06-27
SNS_matlab-master\Brasserie_L_Aficion_0.50_sns.png, 460700 , 2016-06-27
SNS_matlab-master\Demo.m, 2318 , 2018-07-12
SNS_matlab-master\gbvs, 0 , 2018-10-24
SNS_matlab-master\gbvs\algsrc, 0 , 2018-10-24
SNS_matlab-master\gbvs\algsrc\connectMatrix.m, 2668 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\distanceMatrix.m, 2137 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\formMapPyramid.m, 942 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\getDims.m, 110 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\graphsalapply.m, 1997 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\graphsalinit.m, 1026 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\indexmatrix.m, 104 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\initGBVS.m, 1772 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\makeLocationMap.m, 945 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexArrangeLinear.cc, 1342 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexArrangeLinear.mexa64, 6982 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexArrangeLinear.mexglx, 5265 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexArrangeLinear.mexmaci, 8816 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexArrangeLinear.mexmaci64, 8736 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexArrangeLinear.mexw32, 6144 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexArrangeLinear.mexw64, 8192 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexAssignWeights.cc, 1836 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexAssignWeights.mexa64, 7240 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexAssignWeights.mexglx, 5325 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexAssignWeights.mexmaci, 8796 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexAssignWeights.mexmaci64, 8720 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexAssignWeights.mexw32, 6144 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexAssignWeights.mexw64, 7680 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexColumnNormalize.cc, 645 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexColumnNormalize.mexa64, 6758 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexColumnNormalize.mexglx, 4945 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexColumnNormalize.mexmaci, 8780 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexColumnNormalize.mexmaci64, 8704 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexColumnNormalize.mexw32, 6144 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexColumnNormalize.mexw64, 7680 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexSumOverScales.cc, 1358 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexSumOverScales.mexa64, 6870 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexSumOverScales.mexglx, 5169 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexSumOverScales.mexmaci, 8816 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexSumOverScales.mexmaci64, 8736 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexSumOverScales.mexw32, 6144 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexSumOverScales.mexw64, 8192 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexVectorToMap.cc, 938 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexVectorToMap.mexa64, 6597 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexVectorToMap.mexglx, 4900 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexVectorToMap.mexmaci, 8748 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexVectorToMap.mexmaci64, 8680 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexVectorToMap.mexw32, 6144 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\mexVectorToMap.mexw64, 7680 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\namenodes.m, 334 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\partitionindex.m, 365 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\principalEigenvectorRaw.m, 570 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\simpledistance.m, 1000 , 2016-06-27
SNS_matlab-master\gbvs\algsrc\sparseness.m, 63 , 2016-06-27
SNS_matlab-master\gbvs\compile, 0 , 2018-10-24
SNS_matlab-master\gbvs\compile\cleanmex.m, 12 , 2016-06-27
SNS_matlab-master\gbvs\compile\gbvs_compile.m, 303 , 2016-06-27
SNS_matlab-master\gbvs\compile\gbvs_compile2.m, 351 , 2016-06-27
SNS_matlab-master\gbvs\demo, 0 , 2018-10-24
SNS_matlab-master\gbvs\demo\demonstration.m, 1693 , 2016-06-27
SNS_matlab-master\gbvs\demo\flicker_motion_demo.m, 744 , 2016-06-27
SNS_matlab-master\gbvs\demo\simplest_demonstration.m, 1812 , 2016-06-27
SNS_matlab-master\gbvs\gbvs.m, 9683 , 2016-06-27
SNS_matlab-master\gbvs\gbvs_fast.m, 344 , 2016-06-27
SNS_matlab-master\gbvs\gbvs_install.m, 100 , 2016-06-27
SNS_matlab-master\gbvs\initcache, 0 , 2018-10-24
SNS_matlab-master\gbvs\initcache\17__24__m__2.mat, 54381 , 2016-06-27
SNS_matlab-master\gbvs\initcache\18__24__m__2.mat, 60929 , 2016-06-27
SNS_matlab-master\gbvs\initcache\18__32__m__2.mat, 121042 , 2016-06-27
SNS_matlab-master\gbvs\initcache\19__24__m__2.mat, 68419 , 2016-06-27
SNS_matlab-master\gbvs\initcache\19__32__m__2.mat, 133276 , 2016-06-27
SNS_matlab-master\gbvs\initcache\20__32__m__2.mat, 146954 , 2016-06-27
SNS_matlab-master\gbvs\initcache\21__32__m__2.mat, 161673 , 2016-06-27
SNS_matlab-master\gbvs\initcache\22__32__m__2.mat, 179086 , 2016-06-27
SNS_matlab-master\gbvs\initcache\23__24__m__2.mat, 97815 , 2016-06-27
SNS_matlab-master\gbvs\initcache\23__32__m__2.mat, 194389 , 2016-06-27
SNS_matlab-master\gbvs\initcache\24__18__m__2.mat, 53317 , 2016-06-27
SNS_matlab-master\gbvs\initcache\24__23__m__2.mat, 95589 , 2016-06-27
SNS_matlab-master\gbvs\initcache\24__24__m__2.mat, 105818 , 2016-06-27
SNS_matlab-master\gbvs\initcache\24__32__m__2.mat, 207963 , 2016-06-27
SNS_matlab-master\gbvs\initcache\25__32__m__2.mat, 233546 , 2016-06-27
SNS_matlab-master\gbvs\initcache\26__32__m__2.mat, 255834 , 2016-06-27
SNS_matlab-master\gbvs\initcache\27__32__m__2.mat, 275933 , 2016-06-27
SNS_matlab-master\gbvs\initcache\27__40__m__2.mat, 493321 , 2016-06-27
SNS_matlab-master\gbvs\initcache\28__32__m__2.mat, 298538 , 2016-06-27
SNS_matlab-master\gbvs\initcache\29__30__m__2.mat, 276057 , 2016-06-27
SNS_matlab-master\gbvs\initcache\30__28__m__2.mat, 250817 , 2016-06-27
SNS_matlab-master\gbvs\initcache\30__29__m__2.mat, 274672 , 2016-06-27
SNS_matlab-master\gbvs\initcache\30__40__m__2.mat, 634888 , 2016-06-27
SNS_matlab-master\gbvs\initcache\32__16__m__2.mat, 67360 , 2016-06-27
SNS_matlab-master\gbvs\initcache\32__21__m__2.mat, 139087 , 2016-06-27
SNS_matlab-master\gbvs\initcache\32__24__m__2.mat, 183556 , 2016-06-27
SNS_matlab-master\gbvs\initcache\32__25__m__2.mat, 216061 , 2016-06-27
SNS_matlab-master\gbvs\initcache\32__28__m__2.mat, 272113 , 2016-06-27
SNS_matlab-master\gbvs\initcache\32__31__m__2.mat, 374266 , 2016-06-27
SNS_matlab-master\gbvs\initcache\32__32__m__2.mat, 387401 , 2016-06-27
SNS_matlab-master\gbvs\initcache\35__40__m__2.mat, 925911 , 2016-06-27
SNS_matlab-master\gbvs\initcache\40__30__m__2.mat, 603024 , 2016-06-27
SNS_matlab-master\gbvs\initcache\40__38__m__2.mat, 1135590 , 2016-06-27

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Hough_Grd
    在灰度图像中进行直线检测,带实验效果图像。利用快速Hough变换,能够正确查找线段端点。(In the gray image in a straight line detection, the experiment with the effect of the image. Using fast Hough transform, to correctly segment endpoint search.)
    2007-08-18 09:59:26下载
    积分:1
  • med
    matlab中值平滑处理,主要是用5点平滑和3点平滑实现(matlab median smoothing was used in 5-point smoothing and 3 points to achieve smooth)
    2009-11-03 11:38:00下载
    积分:1
  • fisherplot
    运用fisher方法进行pca降维和Lda特征提取的人耳识别。(Use fisher method Lda PCA dimensionality reduction and feature extraction to identify the human ear.)
    2008-05-13 20:35:12下载
    积分:1
  • 颜色识别
    stm32识别颜色的算法程序源代码,对于不同颜色的识别准确率极高(STM32 color recognition algorithm program source code)
    2020-09-01 11:08:08下载
    积分:1
  • PML-v1.0
    说明:  Projection Metric Learning on Grassmann Manifold with Application to Video based Face Recognition
    2020-11-17 13:59:40下载
    积分:1
  • 34188398matlab2
    小波去噪的程序,很好用,推荐给大家使用。(Wavelet denoising procedures, very easy to use, recommended for everyone to use)
    2019-03-28 16:04:00下载
    积分:1
  • xapp741
    说明:  该设计使用8个AXI视频直接存储器访问(AXI VDMA)引擎同时移动16个流(8个传输视频流和8个接收视频流),每个流以1920 x 1080像素格式以60赫兹刷新率移动,每个像素24个数据位。此设计还具有额外的视频等效AXI流量,该流量由为1080p视频模式配置的四个LogiCORE AXI流量发生器(ATG)核心生成。ATG核心根据其配置生成连续的AXI流量。在本设计中,ATG被配置成以1080p模式生成AXI4视频流量。这使得系统吞吐量需求达到DDR的80%左右带宽。每个AXI VDMA由LogiCORE IP测试模式生成器(AXI TPG)核心驱动。AXI VDMA配置为在自由运行模式下运行。每个AXI VDMA读取的数据被发送到能够将多个视频流多路复用或叠加到单个输出视频流的通用视频屏幕显示(AXI OSD)核心。AXI OSD核心的输出驱动板载高清媒体接口(HDMI技术)视频显示接口通过RGB到YCrCb颜色空间转换器核心和逻辑核心IP色度重采集器核心。LogiCore视频定时控制器(AXI VTC)生成所需的定时信号。(The design uses eight AXI video direct memory access (AXI VDMA) engines to simultaneously move 16 streams (eight transmit video streams and eight receive video streams), each in 1920 x 1080 pixel format at 60 Hz refresh rate, and 24 data bits per pixel. This design also has additional video equivalent AXI traffic generated from four LogiCORE AXI Traffic Generator(ATG) cores configured for 1080p video mode. The ATG core generates continuous AXI traffic based on its configuration. In this design, ATG is configured to generate AXI4 video traffic in 1080p mode. This pushes the system throughput requirement to approximately 80% of DDR bandwidth. Each AXI VDMA is driven from a LogiCORE IP Test Pattern Generator (AXI TPG)core. AXI VDMA is configured to operate in free running mode. Data read by each AXI VDMA is sent to a common Video On-Screen Display (AXI OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream.)
    2020-05-08 18:03:59下载
    积分:1
  • TDPCA
    自己编写的一个用于人脸识别2dpca程序,很好用的,里面有中文注释(I have written one for the face recognition 2dpca procedures, well used, which has Chinese Notes)
    2007-09-15 11:46:17下载
    积分:1
  • linengcanshu
    本软件能根据轧制工艺条件快速准确地计算出轧制力,并已经通过实际检测,与实际值误差在10%之内,建议教学轧制力时采用(software based on the rolling conditions quickly and accurately calculate the rolling force, and has adopted effective detection, and the actual value of the 10% error within the recommended teaching rolling force used.)
    2007-06-23 14:02:08下载
    积分:1
  • 中国7大地理分区
    说明:  中国7大地理分区shp文件,东北、华北、华东、华中、华南、西南、西北七大经济协作区(Shp files of seven geographical regions in China)
    2021-03-28 03:59:11下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载