登录
首页 » matlab » Svdfeature-1.2.2

Svdfeature-1.2.2

于 2019-03-18 发布 文件大小:148KB
0 165
下载积分: 1 下载次数: 1

代码说明:

  SVD特征分解代码,编程语言为matlab格式,非常好用的啊(SVD feature decomposition code, programming language for matlab format, very useful ah)

文件列表:

svdfeature-1.2.2, 0 , 2013-01-03
svdfeature-1.2.2\apex_svd_model.h, 30846 , 2013-01-03
svdfeature-1.2.2\svd_feature_infer.cpp, 15167 , 2013-01-03
svdfeature-1.2.2\apex_svd.h, 9933 , 2013-01-03
svdfeature-1.2.2\svd_feature.cpp, 11323 , 2013-01-03
svdfeature-1.2.2\apex_svd_data.h, 24223 , 2013-01-03
svdfeature-1.2.2\README, 912 , 2013-01-03
svdfeature-1.2.2\apex-utils, 0 , 2013-01-03
svdfeature-1.2.2\apex-utils\apex_thread.h, 3583 , 2013-01-03
svdfeature-1.2.2\apex-utils\apex_config.h, 5946 , 2013-01-03
svdfeature-1.2.2\apex-utils\apex_utils.h, 5769 , 2013-01-03
svdfeature-1.2.2\apex-utils\apex_task.h, 1634 , 2013-01-03
svdfeature-1.2.2\apex-utils\apex_evaluator.h, 8299 , 2013-01-03
svdfeature-1.2.2\apex-utils\apex_matrix_csr.h, 4740 , 2013-01-03
svdfeature-1.2.2\apex-utils\apex_buffer_loader.h, 7951 , 2013-01-03
svdfeature-1.2.2\Makefile, 815 , 2013-01-03
svdfeature-1.2.2\apex_svd_data.cpp, 52919 , 2013-01-03
svdfeature-1.2.2\demo, 0 , 2013-01-03
svdfeature-1.2.2\demo\clean.sh, 123 , 2013-01-03
svdfeature-1.2.2\demo\README, 3833 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback, 0 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\ua.test.feedbackexample, 47 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\run.sh, 414 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\run-ml100K.sh, 1338 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\ua.test.example, 158 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\ua.base.group.example, 158 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\ua.base.feedbackexample, 47 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\mkimplicitfeedbackfeature.py, 2002 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\mkbasicfeature.py, 1087 , 2013-01-03
svdfeature-1.2.2\demo\implicitFeedback\implicitFeedback.conf, 926 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank, 0 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\ua.test.feedbackexample, 12 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\run.sh, 406 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\run-ml100K.sh, 1674 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\ua.test.example, 158 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\mkimplicitfeedbackfeaturetest.py, 1023 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\ua.base.group.example, 158 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\pairwiseRankML100K.conf, 1112 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\mktestrank.py, 1576 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\README, 1969 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\sampleneg.py, 2047 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\ua.base.feedbackexample, 12 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\eval.py, 401 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\mkimplicitfeedbackfeature.py, 2000 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\mkbasicfeature.py, 1022 , 2013-01-03
svdfeature-1.2.2\demo\pairwiseRank\pairwiseRank.conf, 987 , 2013-01-03
svdfeature-1.2.2\demo\basicMF, 0 , 2013-01-03
svdfeature-1.2.2\demo\basicMF\run.sh, 386 , 2013-01-03
svdfeature-1.2.2\demo\basicMF\run-ml100K.sh, 890 , 2013-01-03
svdfeature-1.2.2\demo\basicMF\ua.test.example, 72 , 2013-01-03
svdfeature-1.2.2\demo\basicMF\ua.base.example, 72 , 2013-01-03
svdfeature-1.2.2\demo\basicMF\basicMF.conf, 727 , 2013-01-03
svdfeature-1.2.2\demo\basicMF\mkbasicfeature.py, 1087 , 2013-01-03
svdfeature-1.2.2\demo\binaryClassification, 0 , 2013-01-03
svdfeature-1.2.2\demo\binaryClassification\run.sh, 412 , 2013-01-03
svdfeature-1.2.2\demo\binaryClassification\ua.test.example, 72 , 2013-01-03
svdfeature-1.2.2\demo\binaryClassification\binaryClassification.conf, 680 , 2013-01-03
svdfeature-1.2.2\demo\binaryClassification\ua.base.example, 72 , 2013-01-03
svdfeature-1.2.2\demo\neighborhoodModel, 0 , 2013-01-03
svdfeature-1.2.2\demo\neighborhoodModel\run.sh, 417 , 2013-01-03
svdfeature-1.2.2\demo\neighborhoodModel\ua.test.example, 86 , 2013-01-03
svdfeature-1.2.2\demo\neighborhoodModel\ua.base.example, 86 , 2013-01-03
svdfeature-1.2.2\demo\neighborhoodModel\neighborhoodModel.conf, 793 , 2013-01-03
svdfeature-1.2.2\tools, 0 , 2013-01-03
svdfeature-1.2.2\tools\kddcup_combine_ugroup.cpp, 13235 , 2013-01-03
svdfeature-1.2.2\tools\svdpp_randorder.cpp, 2307 , 2013-01-03
svdfeature-1.2.2\tools\combine_ugroup.cpp, 13045 , 2013-01-03
svdfeature-1.2.2\tools\Makefile, 961 , 2013-01-03
svdfeature-1.2.2\tools\make_feature_buffer.cpp, 2369 , 2013-01-03
svdfeature-1.2.2\tools\line_shuffle.cpp, 1780 , 2013-01-03
svdfeature-1.2.2\tools\line_reorder.cpp, 2038 , 2013-01-03
svdfeature-1.2.2\tools\make_ugroup_buffer.cpp, 2933 , 2013-01-03
svdfeature-1.2.2\solvers, 0 , 2013-01-03
svdfeature-1.2.2\solvers\multi-imfb, 0 , 2013-01-03
svdfeature-1.2.2\solvers\multi-imfb\apex_multi_imfb.cpp, 1393 , 2013-01-03
svdfeature-1.2.2\solvers\multi-imfb\Makefile, 970 , 2013-01-03
svdfeature-1.2.2\solvers\multi-imfb\apex_multi_imfb.h, 8777 , 2013-01-03
svdfeature-1.2.2\solvers\bilinear, 0 , 2013-01-03
svdfeature-1.2.2\solvers\bilinear\Makefile, 989 , 2013-01-03
svdfeature-1.2.2\solvers\bilinear\apex_svd_bilinear.cpp, 1369 , 2013-01-03
svdfeature-1.2.2\solvers\bilinear\apex_svd_bilinear.h, 8901 , 2013-01-03
svdfeature-1.2.2\solvers\base-solver, 0 , 2013-01-03
svdfeature-1.2.2\solvers\base-solver\apex_svd_base.cpp, 1249 , 2013-01-03
svdfeature-1.2.2\solvers\base-solver\README, 59 , 2013-01-03
svdfeature-1.2.2\solvers\base-solver\Makefile, 968 , 2013-01-03
svdfeature-1.2.2\solvers\base-solver\apex_svd_base.h, 36031 , 2013-01-03
svdfeature-1.2.2\solvers\gbrt, 0 , 2013-01-03
svdfeature-1.2.2\solvers\gbrt\Makefile, 984 , 2013-01-03
svdfeature-1.2.2\solvers\gbrt\apex_gbrt.h, 47378 , 2013-01-03
svdfeature-1.2.2\solvers\gbrt\apex_reg_tree.cpp, 33932 , 2013-01-03
svdfeature-1.2.2\solvers\gbrt\apex_gbrt.cpp, 1338 , 2013-01-03
svdfeature-1.2.2\solvers\gbrt\apex_reg_tree.h, 12591 , 2013-01-03
svdfeature-1.2.2\solvers\example, 0 , 2013-01-03
svdfeature-1.2.2\solvers\example\README, 152 , 2013-01-03
svdfeature-1.2.2\solvers\example\Makefile, 945 , 2013-01-03
svdfeature-1.2.2\solvers\example\apex_svd_lite.h, 8170 , 2013-01-03
svdfeature-1.2.2\solvers\example\apex_svd_lite.cpp, 1176 , 2013-01-03
svdfeature-1.2.2\apex-tensor, 0 , 2013-01-03
svdfeature-1.2.2\apex-tensor\apex_stream.h, 2093 , 2013-01-03
svdfeature-1.2.2\apex-tensor\apex_tensor_cpu_inline_common.h, 9493 , 2013-01-03

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 单目标BSO
    说明:  单目标头脑风暴优化算法,用来对生产调度等进行优化的新型群体智能优化算法(Single-objective brainstorming optimization algorithm, a new group intelligence optimization algorithm used to optimize production scheduling, etc.)
    2021-04-16 22:28:54下载
    积分:1
  • Desktop
    可进行针对有约束的,非线性的多参数的目标优化(Constrained nonlinear multi parameter optimization can be carried out)
    2017-09-24 10:46:40下载
    积分:1
  • EKF
    说明:  扩展卡尔曼滤波算法的simulink模型(Extended Kalman Filter)
    2020-03-06 22:08:41下载
    积分:1
  • 随风汇编模块
    易语言纯汇编模块源码:常用汇编指令集合,远程调试(Easy language assembler module source code: commonly used assembly instructions set, remote debugging)
    2018-05-08 10:17:09下载
    积分:1
  • STAB is a new active probing tool for locating thin links on a network path. A t...
    STAB is a new active probing tool for locating thin links on a network path. A thin link is a link with less available bandwidth than all links preceding it on the path. The last thin link on the path is the link with the minimum available bandwidth or tight link. STAB combines the concept of "self-induced congestion", the probing technique of "packet tailgating", and special probing trains called "chirps" to efficiently locate the thin links.
    2023-07-29 03:10:03下载
    积分:1
  • meanshift_seg
    用meanshift算法实现图像的平滑和分割的算法(Algorithm used meanshift image smoothing and segmentation algorithms)
    2009-06-17 23:34:05下载
    积分:1
  • MedicManagementS
    药品管理系统,MFC+Access,MFC+SQL Server(Drug management system, MFC+Access, MFC+SQL Server)
    2020-10-26 23:19:59下载
    积分:1
  • e3f9100e32057816adf07b82960881be
    分析了永磁同步电机矢量控制的发展概况,然后从机电能量转换的角度出发,解释三相永磁同步电机的机电能量转换原理,推导拉格朗日运动方程。此外,列写出永磁同步电机在三相静止坐标系和dq坐标系下的数学模型。基于Simulink建立了转速电流双闭环矢量控制系统的仿真模型,通过对仿真结果分析,验证了永磁同步电机矢量控制系统性能的优越性(The development of vector control of permanent magnet synchronous motor is analyzed. Then, from the perspective of electromechanical energy conversion, the principle of electromechanical energy conversion of three-phase permanent magnet synchronous motor is explained, and the Lagrangian motion equation is derived. In addition, the mathematical model of the permanent magnet synchronous motor in the three-phase stationary coordinate system and the dq coordinate system is written. Based on Simulink, the simulation model of the speed and current double closed-loop vector control system is established. The simulation results are analyzed to verify the superiority of the performance of the permanent magnet synchronous motor vector control system.)
    2018-07-20 14:42:52下载
    积分:1
  • ZigBee新设备入网过程
    ZigBee 新设备入网过程,详细解释了ZigBee的入网流程。(How does a smart home device join into the Zigbee network)
    2017-09-22 11:16:42下载
    积分:1
  • 自己编的一个火车售票系统,欢迎大家下载指点我的软件
    自己编的一个火车售票系统,欢迎大家下载指点我的软件-own a series of the train ticketing system, we welcome the guidance of my downloaded software
    2022-02-14 20:05:38下载
    积分:1
  • 696518资源总数
  • 106259会员总数
  • 28今日下载