登录
首页 » matlab » GNN_1_1b

GNN_1_1b

于 2020-07-03 发布 文件大小:473KB
0 123
下载积分: 1 下载次数: 18

代码说明:

  基于GNN神经网络的系统仿真,具有较好的仿真效果。(Based on GNN neural network system simulation, has a good simulation results.)

文件列表:

GNN_1_1b
........\GNN 1.1b
........\........\comparisonNet
........\........\.............\initializeComparisonNet.m,1962,2007-12-15
........\........\.............\learnComparisonNet.m,5195,2007-12-15
........\........\.............\plotComparisonNetTrainingResults.m,613,2007-12-15
........\........\.............\testComparisonNet.m,7469,2007-12-15
........\........\Configure.m,39956,2011-03-01
........\........\datasets
........\........\........\CliqueDataset.config,1039,2007-12-15
........\........\........\HalfHotDataset.config,892,2007-12-15
........\........\........\makeCliqueDataset.m,9487,2007-12-15
........\........\........\makeCliqueDataset_fix_rand.m,9786,2007-12-15
........\........\........\makeGeneralDataset.m,8650,2007-12-15
........\........\........\makeHalfHotDataset.m,11774,2007-12-15
........\........\........\makeMutagenicDataset.m,13115,2013-02-11
........\........\........\makeNeighborsDataset.m,9303,2007-12-15
........\........\........\makeOddEvenDataset.m,7952,2007-12-15
........\........\........\makeParityDataset.m,7941,2007-12-15
........\........\........\makeSecondOrderNeighborsDataset.m,9856,2007-12-15
........\........\........\makeSubGraphDataset.m,11308,2007-12-15
........\........\........\makeTmpDataset.m,1891,2007-12-15
........\........\........\makeTreeDepthDataset.m,9592,2007-12-15
........\........\........\makeWebPagesScoringDataset.m,10743,2007-12-15
........\........\........\muta-f.pl,390315,2007-12-15
........\........\........\muta-u.pl,77086,2007-12-15
........\........\........\muta.pl,467401,2007-12-15
........\........\........\muta.pl_new,357429,2007-12-15
........\........\........\NeighborsDataset.config,854,2007-12-15
........\........\........\ParityDataset.config,806,2007-12-15
........\........\........\SecondOrderNeighborsDataset.config,875,2007-12-15
........\........\........\SubGraphMatchingDataset.config,1120,2007-12-15
........\........\........\TreeDepthDataset.config,788,2007-12-15
........\........\........\TreeDepthDataset.config.backup,808,2007-12-15
........\........\........\WebPagesScoringDataset.config,868,2007-12-15
........\........\experiments
........\........\...........\init_class.m,432,2007-12-15
........\........\...........\save_learning.m,1046,2007-12-15
........\........\...........\start_learning.m,161,2007-12-15
........\........\...........\test_learning.m,1600,2007-12-15
........\........\GNN.config,2857,2011-03-01
........\........\GNN_DOC.pdf,190123,2011-07-21
........\........\initialization
........\........\..............\initializeNet.m,1547,2007-12-15
........\........\isomorphism
........\........\...........\areIsomorph.m,1664,2007-12-15
........\........\...........\isomorphism.mat,4295,2007-12-15
........\........\...........\mygetPR.m,282,2007-12-15
........\........\...........\mytest.m,287,2007-12-15
........\........\learn.m,552,2007-12-15
........\........\MLP
........\........\...\initializeMLP.m,1653,2007-12-15
........\........\...\testMLP.m,2656,2007-12-15
........\........\...\trainMLP.m,4954,2007-12-15
........\........\neuralNetworks
........\........\..............\backwardOneLayerLinearOutNet.m,431,2007-12-15
........\........\..............\backwardOneLayerNet.m,826,2007-12-15
........\........\..............\backwardTwoLayerLinearOutNet.m,725,2007-12-15
........\........\..............\backwardTwoLayerNet.m,982,2007-12-15
........\........\..............\forwardJacobianOneLayerLinearOutNet.m,166,2007-12-15
........\........\..............\forwardJacobianOneLayerNet.m,239,2007-12-15
........\........\..............\forwardOneLayerLinearOutNet.m,698,2007-12-15
........\........\..............\forwardOneLayerNet.m,340,2007-12-15
........\........\..............\forwardTwoLayerLinearOutNet.m,1207,2007-12-15
........\........\..............\forwardTwoLayerNet.m,1216,2007-12-15
........\........\..............\getDeltaJacobianOneLayerLinearOutNet.m,368,2007-12-15
........\........\..............\getDeltaJacobianOneLayerNet.m,521,2007-12-15
........\........\..............\getDeltaJacobianTwoLayerLinearOutNet.m,831,2007-12-15
........\........\..............\getDeltaJacobianTwoLayerNet.m,929,2007-12-15
........\........\..............\getJacobianOneLayerLinearOutNet.m,781,2007-12-15
........\........\..............\getJacobianTwoLayerLinearOutNet.m,780,2007-12-15
........\........\private
........\........\.......\displayTestRes.m,2271,2007-12-15
........\........\.......\evaluateAccuracyOnGraphs.m,652,2007-12-15
........\........\.......\learn_.m,20232,2007-12-15
........\........\.......\test4autoassociator.m,14720,2007-12-15
........\........\.......\test4autoassociator_old.m,17292,2007-12-15
........\........\.......\test4autoassociator_veryold.m,11827,2007-12-15
........\........\.......\test4classification.m,12806,2011-03-11
........\........\.......\test4regression.m,9993,2011-03-11
........\........\.......\test4uniform.m,5827,2007-12-15
........\........\save_experiment.m,376,2007-12-15
........\........\startSession.m,72,2011-03-01
........\........\systemModels
........\........\............\autoassociatorComputeDeltaError.m,637,2007-12-15
........\........\............\autoassociatorComputeError.m,1456,2007-12-15
........\........\............\linearModelInitialize.m,1128,2007-12-15
........\........\............\linearModelRunBackward.m,3807,2007-12-15
........\........\............\linearModelRunForward.m,2208,2007-12-15
........\........\............\mseComputeDeltaError.m,654,2007-12-15
........\........\............\mseComputeError.m,1344,2007-12-15
........\........\............\neuralModelAutomorphComputeError.m,1651,2007-12-15
........\........\............\neuralModelGetDeltaJacobian.m,1265,2007-12-15
........\........\............\neuralModelGetJacobian.m,1837,2007-12-15
........\........\............\neuralModelInitialize.m,6488,2007-12-15
........\........\............\neuralModelQuadraticComputeDeltaError.m,587,2007-12-15
........\........\............\neuralModelQuadraticComputeError.m,1063,2007-12-15
........\........\............\neuralModelRunBackward.m,1285,2007-12-15
........\........\............\neuralModelRunForward.m,1555,2007-12-15
........\........\............\neuralModelWithProductComputeDeltaError.m,1308,2007-12-15

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 光伏
    MPPT控制器的全称“最大功率点跟踪”(Maximum Power Point Tracking)太阳能控制器,是传统太阳能充放电控制器的升级换代产品。所谓最大功率点跟踪,即是指控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最高的效率对蓄电池充电。下面我们用一种机械模拟对比的方式来向大家解释MPPT太阳能控制器的基本原理。(The full name of MPPT controller is "Maximum Power Point Tracking" solar controller, which is an upgrade product of the traditional solar charge and discharge controller. The so-called maximum power point tracking (MPPT) means that the controller can detect the generation voltage of solar panels in real time, and track the maximum voltage and current (VI), so that the system can charge the battery with the highest efficiency. Next, we will explain the basic principle of MPPT solar controller in a way of mechanical simulation and comparison.)
    2021-04-22 12:48:48下载
    积分:1
  • 用重标度极差法计算hurst指数的matlab程序
    用重标度极差法计算hurst指数的MATLAB程序(Calculation of Hurst by using rescaled range method)
    2018-10-23 17:33:43下载
    积分:1
  • 基于Js的网页全屏相册特效
    Js全屏相册代码,带有图片幻灯特效,基于jQuery的相册特效,动画效果类似FLASH,利用JS分别控制多个图层滚动,形成逼真的Flash特效,编辑注:缺失的图片请自己补全吧,图片地址可能不对了。
    2022-10-29 13:50:03下载
    积分:1
  • 头条jQuery焦点图
    焦点图是一款导航网站新闻头条频道的jquery焦点图(Focus Map is a jQuery focus map of a navigation website news headline channel)
    2019-03-25 17:07:46下载
    积分:1
  • VC++结合ADO实现数据库版的DTree树叉菜单
    VC++结合ADO实现数据库版的DTree树叉菜单,这是一个与数据库相结合的树形菜单效果,在使用ADO技术时,需要导入一个ADO动态链接库msado15.dll,该动态库位于系统盘下的“Program FilesCommon FilesSystemado”目录下。   例:如果你的系统盘为C盘,则该文件位于“C:Program FilesCommon FilesSystemado”目录中。所以需要打开工程文件,并展开“FileView”视图中的“Header Files”节点,然后双击“ADOConn.h”文件,将代码中的“d:Program FilesCommon FilesSystemadomsado15.dll”改为“c:Program FilesCommon FilesSystemadomsado15.dll”。
    2022-03-25 19:42:48下载
    积分:1
  • Delphi多重文件界面实例
    一个Delphi多重MDI文件界面实例,多文档视图窗口的例子。
    2022-07-09 08:17:48下载
    积分:1
  • dina vix killer V.1
    说明:  DINA INDICATOR BINARY OPTIONS
    2019-11-28 10:03:40下载
    积分:1
  • 这是一个我自己开发的,可以通过定制模板来实现PowerBuilder中将数据窗口的一行导入到excel中的全局函数,功能非常强大...
    这是一个我自己开发的,可以通过定制模板来实现PowerBuilder中将数据窗口的一行导入到excel中的全局函数,功能非常强大-This is a development of my own, you can customize the templates to achieve the PowerBuilder DataWindow row will be imported into excel in the global function is very powerful
    2022-01-25 17:12:06下载
    积分:1
  • androidwnykqjhxgym
    安卓遥控器12346576875643245(123456789987654323456765432)
    2020-06-21 03:20:01下载
    积分:1
  • PO_simple
    说明:  基于PO算法计算仿真单反射面天线的方向图(Computation of Antenna Patterns of Simulated Reflector antennas Based on PO Algorithms)
    2018-12-24 15:44:51下载
    积分:1
  • 696518资源总数
  • 104228会员总数
  • 45今日下载