登录
首页 » WINDOWS » 基于帧差法多目标跟踪Matlab代码

基于帧差法多目标跟踪Matlab代码

于 2017-08-31 发布 文件大小:30764KB
0 126
下载积分: 1 下载次数: 37

代码说明:

  非常完整的帧差法多目标跟踪Matlab代码,并提供了完整的文档介绍,非常适合初学者学习。注:运行时要改一下文件路径,以及把视频文件转成图像序列输入。(Very complete frame difference method, multi-target tracking Matlab code, and provides a complete documentation, very suitable for beginners to learn. Note: at run time, you change the file path, and the video file is converted to an image sequence)

文件列表:

vlfeat-0.9.18\.gitattributes
vlfeat-0.9.18\.gitignore
vlfeat-0.9.18\apps\phow_caltech101.m
vlfeat-0.9.18\apps\recognition\encodeImage.m
vlfeat-0.9.18\apps\recognition\experiments.m
vlfeat-0.9.18\apps\recognition\extendDescriptorsWithGeometry.m
vlfeat-0.9.18\apps\recognition\getDenseSIFT.m
vlfeat-0.9.18\apps\recognition\readImage.m
vlfeat-0.9.18\apps\recognition\setupCaltech256.m
vlfeat-0.9.18\apps\recognition\setupFMD.m
vlfeat-0.9.18\apps\recognition\setupGeneric.m
vlfeat-0.9.18\apps\recognition\setupScene67.m
vlfeat-0.9.18\apps\recognition\setupVoc.m
vlfeat-0.9.18\apps\recognition\trainEncoder.m
vlfeat-0.9.18\apps\recognition\traintest.m
vlfeat-0.9.18\apps\sift_mosaic.m
vlfeat-0.9.18\bin\glnx86\aib
vlfeat-0.9.18\bin\glnx86\libvl.so
vlfeat-0.9.18\bin\glnx86\mser
vlfeat-0.9.18\bin\glnx86\sift
vlfeat-0.9.18\bin\glnx86\test_gauss_elimination
vlfeat-0.9.18\bin\glnx86\test_getopt_long
vlfeat-0.9.18\bin\glnx86\test_gmm
vlfeat-0.9.18\bin\glnx86\test_heap-def
vlfeat-0.9.18\bin\glnx86\test_host
vlfeat-0.9.18\bin\glnx86\test_imopv
vlfeat-0.9.18\bin\glnx86\test_kmeans
vlfeat-0.9.18\bin\glnx86\test_liop
vlfeat-0.9.18\bin\glnx86\test_mathop
vlfeat-0.9.18\bin\glnx86\test_mathop_abs
vlfeat-0.9.18\bin\glnx86\test_nan
vlfeat-0.9.18\bin\glnx86\test_qsort-def
vlfeat-0.9.18\bin\glnx86\test_rand
vlfeat-0.9.18\bin\glnx86\test_sqrti
vlfeat-0.9.18\bin\glnx86\test_stringop
vlfeat-0.9.18\bin\glnx86\test_svd2
vlfeat-0.9.18\bin\glnx86\test_threads
vlfeat-0.9.18\bin\glnx86\test_vec_comp
vlfeat-0.9.18\bin\glnxa64\aib
vlfeat-0.9.18\bin\glnxa64\libvl.so
vlfeat-0.9.18\bin\glnxa64\mser
vlfeat-0.9.18\bin\glnxa64\sift
vlfeat-0.9.18\bin\glnxa64\test_gauss_elimination
vlfeat-0.9.18\bin\glnxa64\test_getopt_long
vlfeat-0.9.18\bin\glnxa64\test_gmm
vlfeat-0.9.18\bin\glnxa64\test_heap-def
vlfeat-0.9.18\bin\glnxa64\test_host
vlfeat-0.9.18\bin\glnxa64\test_imopv
vlfeat-0.9.18\bin\glnxa64\test_kmeans
vlfeat-0.9.18\bin\glnxa64\test_liop
vlfeat-0.9.18\bin\glnxa64\test_mathop
vlfeat-0.9.18\bin\glnxa64\test_mathop_abs
vlfeat-0.9.18\bin\glnxa64\test_nan
vlfeat-0.9.18\bin\glnxa64\test_qsort-def
vlfeat-0.9.18\bin\glnxa64\test_rand
vlfeat-0.9.18\bin\glnxa64\test_sqrti
vlfeat-0.9.18\bin\glnxa64\test_stringop
vlfeat-0.9.18\bin\glnxa64\test_svd2
vlfeat-0.9.18\bin\glnxa64\test_threads
vlfeat-0.9.18\bin\glnxa64\test_vec_comp
vlfeat-0.9.18\bin\maci\aib
vlfeat-0.9.18\bin\maci\libvl.dylib
vlfeat-0.9.18\bin\maci\mser
vlfeat-0.9.18\bin\maci\sift
vlfeat-0.9.18\bin\maci\test_gauss_elimination
vlfeat-0.9.18\bin\maci\test_getopt_long
vlfeat-0.9.18\bin\maci\test_gmm
vlfeat-0.9.18\bin\maci\test_heap-def
vlfeat-0.9.18\bin\maci\test_host
vlfeat-0.9.18\bin\maci\test_imopv
vlfeat-0.9.18\bin\maci\test_kmeans
vlfeat-0.9.18\bin\maci\test_liop
vlfeat-0.9.18\bin\maci\test_mathop
vlfeat-0.9.18\bin\maci\test_mathop_abs
vlfeat-0.9.18\bin\maci\test_nan
vlfeat-0.9.18\bin\maci\test_qsort-def
vlfeat-0.9.18\bin\maci\test_rand
vlfeat-0.9.18\bin\maci\test_sqrti
vlfeat-0.9.18\bin\maci\test_stringop
vlfeat-0.9.18\bin\maci\test_svd2
vlfeat-0.9.18\bin\maci\test_threads
vlfeat-0.9.18\bin\maci\test_vec_comp
vlfeat-0.9.18\bin\maci64\aib
vlfeat-0.9.18\bin\maci64\libvl.dylib
vlfeat-0.9.18\bin\maci64\mser
vlfeat-0.9.18\bin\maci64\sift
vlfeat-0.9.18\bin\maci64\test_gauss_elimination
vlfeat-0.9.18\bin\maci64\test_getopt_long
vlfeat-0.9.18\bin\maci64\test_gmm
vlfeat-0.9.18\bin\maci64\test_heap-def
vlfeat-0.9.18\bin\maci64\test_host
vlfeat-0.9.18\bin\maci64\test_imopv
vlfeat-0.9.18\bin\maci64\test_kmeans
vlfeat-0.9.18\bin\maci64\test_liop
vlfeat-0.9.18\bin\maci64\test_mathop
vlfeat-0.9.18\bin\maci64\test_mathop_abs
vlfeat-0.9.18\bin\maci64\test_nan
vlfeat-0.9.18\bin\maci64\test_qsort-def
vlfeat-0.9.18\bin\maci64\test_rand
vlfeat-0.9.18\bin\maci64\test_sqrti

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • hog-feature
    HOG(方向梯度直方图)图像特征提取,以lena图像作为示例(HOG (Histogram of Oriented Gradients) image feature extraction, image as an example to lena)
    2014-02-25 17:20:58下载
    积分:1
  • 20080111
    有关图像的目标识别:"给出一种基于特征分类辨识的合成孔径雷达图像目标检测方法#用恒虚警和扩展分形方法对3&E图像进行目 标检测后用面积和峰值能量比算子辨识目标和背景杂波!去除一部分虚警!用小波域主成分分析对每个检测窗口内的图 像提取特征向量!用支持向量机对提取得到的特征向量进行分类!辨识目标和背景杂波!完成目标检测#使用&K?3数 据对该方法进行验证和分析!实验结果表明!经过特征分类辨识后!在检测率不变的情况下!虚警数目显著降低# (Related to the image target recognition)
    2009-12-07 10:21:47下载
    积分:1
  • GJdct1
    关于脆弱性水印的,是一个挺不错的。希望能帮助到有需要的同学(on vulnerability watermark is a quite good. Intend to help the needy students)
    2007-05-19 22:24:28下载
    积分:1
  • temp
    Radon 算法的实现及原理讲解,个人整理的重要资料.(Radon algorithm and explain the principle, personal collation of vital information.)
    2007-10-23 23:35:06下载
    积分:1
  • hongmo3
    可以看到圆心坐标和半径参数,在坐标中画出这个圆,编写画圆函数(You can see the center coordinates and the radius parameters, draw the circle in the coordinates, write the function to draw the circle)
    2019-04-01 14:11:36下载
    积分:1
  • SpeckleReducingAnisotropicDiffusion
    说明:  基于各向异性扩散方程的一款经典的SAR图像相干斑噪声抑制的算法实现,可以直接用的,效果很好!(Anisotropic diffusion equation based on a classic SAR image speckle noise reduction algorithm can be directly used, very good!)
    2009-07-31 16:36:26下载
    积分:1
  • EDLines 快速直线检测算子
    EDLines是一种快速直线检测算子,2012年在ICCV上提出,也是目前处理直线检测最快的算法之一,该算法包含三个步骤:(1)边缘提取:利用Edge Drawing (ED)算法[28,29]从灰度图像中提取边缘片段;(2)线段检测:利用最小二乘法提取直线段;(3)线段确认:遵循Helmholtz定律,从已提取的直线段中摒弃虚假线段。EDLines算法的优越性得益于Edge Drawing (ED)算法能够从灰度图像中准确、快速、稳定地提取出光滑、完整的边缘片段。Edge Drawing (ED)算法包含以下步骤: (1)采用size=5*5,σ=1的高斯核对灰度图像进行平滑滤波,去除噪声; (2)采用一种常用的梯度算子,如Prewitt、Sobel或Scharr等计算平滑后图像中每个像素点的梯度幅度和梯度方向; (3)将梯度图中邻域内幅度最大的像素点标记为锚点,这些锚点成为图像边缘点(edge elements)的概率很大; (4)将相邻的锚点连接成边缘线。从一个锚点起始,ED利用相邻像素的梯度幅度和方向在梯度为最大值的锚点之间游走。 (Edge Drawing (ED) is our recently-proposed, novel, fast edge detection algorithm. What makes ED stand out the existing edge detectors, e.g., Canny, is the following: While the other edge detectors give out a binary edge image as output, where the etected edge pixels are usually independent, discontinuous entities ED produces a set of edge segments, which are clean, contiguous, i.e., connected, chains of edge pixels. Thus, while the output of the other edge detectors requires urther processing to generate potential object boundaries, which may not even be possible or result in inaccuracies ED not only produces perfectly connected object boundaries by default, but it also achieves this in blazing speed compared to other edge detector.)
    2021-03-22 16:29:16下载
    积分:1
  • studyonhighspeedandrealtimestorage
    以“宽幅盖面阵立体测绘小相机”项目为课题背景,深入的研究了高速图像传输,图 像实时压缩和压缩图像数据的实时存储问题 ATA,fpga("Wide Coverage RUF small, three-dimensional mapping camera," project subject to the background and in-depth study of the high-speed image transmission, Image compression and real-time compression of real-time image data storage problems ATA, fpga)
    2007-07-02 11:12:50下载
    积分:1
  • huoquzhidingyanse
    这个代码可以获取一种颜色可以生成10进制的数,和一个16进制的数(the code can get a color can generate 10 to the 229 number, and a few of the 229 16)
    2006-11-28 01:28:00下载
    积分:1
  • matlab_source_code
    局部拉普拉斯滤波代码,效果很好,可以直接运行(Edge-aware Image Processing with a Laplacian Pyramid)
    2021-04-06 20:29:02下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载