登录
首页 » WINDOWS » 基于帧差法多目标跟踪Matlab代码

基于帧差法多目标跟踪Matlab代码

于 2017-08-31 发布 文件大小:30764KB
0 135
下载积分: 1 下载次数: 37

代码说明:

  非常完整的帧差法多目标跟踪Matlab代码,并提供了完整的文档介绍,非常适合初学者学习。注:运行时要改一下文件路径,以及把视频文件转成图像序列输入。(Very complete frame difference method, multi-target tracking Matlab code, and provides a complete documentation, very suitable for beginners to learn. Note: at run time, you change the file path, and the video file is converted to an image sequence)

文件列表:

vlfeat-0.9.18\.gitattributes
vlfeat-0.9.18\.gitignore
vlfeat-0.9.18\apps\phow_caltech101.m
vlfeat-0.9.18\apps\recognition\encodeImage.m
vlfeat-0.9.18\apps\recognition\experiments.m
vlfeat-0.9.18\apps\recognition\extendDescriptorsWithGeometry.m
vlfeat-0.9.18\apps\recognition\getDenseSIFT.m
vlfeat-0.9.18\apps\recognition\readImage.m
vlfeat-0.9.18\apps\recognition\setupCaltech256.m
vlfeat-0.9.18\apps\recognition\setupFMD.m
vlfeat-0.9.18\apps\recognition\setupGeneric.m
vlfeat-0.9.18\apps\recognition\setupScene67.m
vlfeat-0.9.18\apps\recognition\setupVoc.m
vlfeat-0.9.18\apps\recognition\trainEncoder.m
vlfeat-0.9.18\apps\recognition\traintest.m
vlfeat-0.9.18\apps\sift_mosaic.m
vlfeat-0.9.18\bin\glnx86\aib
vlfeat-0.9.18\bin\glnx86\libvl.so
vlfeat-0.9.18\bin\glnx86\mser
vlfeat-0.9.18\bin\glnx86\sift
vlfeat-0.9.18\bin\glnx86\test_gauss_elimination
vlfeat-0.9.18\bin\glnx86\test_getopt_long
vlfeat-0.9.18\bin\glnx86\test_gmm
vlfeat-0.9.18\bin\glnx86\test_heap-def
vlfeat-0.9.18\bin\glnx86\test_host
vlfeat-0.9.18\bin\glnx86\test_imopv
vlfeat-0.9.18\bin\glnx86\test_kmeans
vlfeat-0.9.18\bin\glnx86\test_liop
vlfeat-0.9.18\bin\glnx86\test_mathop
vlfeat-0.9.18\bin\glnx86\test_mathop_abs
vlfeat-0.9.18\bin\glnx86\test_nan
vlfeat-0.9.18\bin\glnx86\test_qsort-def
vlfeat-0.9.18\bin\glnx86\test_rand
vlfeat-0.9.18\bin\glnx86\test_sqrti
vlfeat-0.9.18\bin\glnx86\test_stringop
vlfeat-0.9.18\bin\glnx86\test_svd2
vlfeat-0.9.18\bin\glnx86\test_threads
vlfeat-0.9.18\bin\glnx86\test_vec_comp
vlfeat-0.9.18\bin\glnxa64\aib
vlfeat-0.9.18\bin\glnxa64\libvl.so
vlfeat-0.9.18\bin\glnxa64\mser
vlfeat-0.9.18\bin\glnxa64\sift
vlfeat-0.9.18\bin\glnxa64\test_gauss_elimination
vlfeat-0.9.18\bin\glnxa64\test_getopt_long
vlfeat-0.9.18\bin\glnxa64\test_gmm
vlfeat-0.9.18\bin\glnxa64\test_heap-def
vlfeat-0.9.18\bin\glnxa64\test_host
vlfeat-0.9.18\bin\glnxa64\test_imopv
vlfeat-0.9.18\bin\glnxa64\test_kmeans
vlfeat-0.9.18\bin\glnxa64\test_liop
vlfeat-0.9.18\bin\glnxa64\test_mathop
vlfeat-0.9.18\bin\glnxa64\test_mathop_abs
vlfeat-0.9.18\bin\glnxa64\test_nan
vlfeat-0.9.18\bin\glnxa64\test_qsort-def
vlfeat-0.9.18\bin\glnxa64\test_rand
vlfeat-0.9.18\bin\glnxa64\test_sqrti
vlfeat-0.9.18\bin\glnxa64\test_stringop
vlfeat-0.9.18\bin\glnxa64\test_svd2
vlfeat-0.9.18\bin\glnxa64\test_threads
vlfeat-0.9.18\bin\glnxa64\test_vec_comp
vlfeat-0.9.18\bin\maci\aib
vlfeat-0.9.18\bin\maci\libvl.dylib
vlfeat-0.9.18\bin\maci\mser
vlfeat-0.9.18\bin\maci\sift
vlfeat-0.9.18\bin\maci\test_gauss_elimination
vlfeat-0.9.18\bin\maci\test_getopt_long
vlfeat-0.9.18\bin\maci\test_gmm
vlfeat-0.9.18\bin\maci\test_heap-def
vlfeat-0.9.18\bin\maci\test_host
vlfeat-0.9.18\bin\maci\test_imopv
vlfeat-0.9.18\bin\maci\test_kmeans
vlfeat-0.9.18\bin\maci\test_liop
vlfeat-0.9.18\bin\maci\test_mathop
vlfeat-0.9.18\bin\maci\test_mathop_abs
vlfeat-0.9.18\bin\maci\test_nan
vlfeat-0.9.18\bin\maci\test_qsort-def
vlfeat-0.9.18\bin\maci\test_rand
vlfeat-0.9.18\bin\maci\test_sqrti
vlfeat-0.9.18\bin\maci\test_stringop
vlfeat-0.9.18\bin\maci\test_svd2
vlfeat-0.9.18\bin\maci\test_threads
vlfeat-0.9.18\bin\maci\test_vec_comp
vlfeat-0.9.18\bin\maci64\aib
vlfeat-0.9.18\bin\maci64\libvl.dylib
vlfeat-0.9.18\bin\maci64\mser
vlfeat-0.9.18\bin\maci64\sift
vlfeat-0.9.18\bin\maci64\test_gauss_elimination
vlfeat-0.9.18\bin\maci64\test_getopt_long
vlfeat-0.9.18\bin\maci64\test_gmm
vlfeat-0.9.18\bin\maci64\test_heap-def
vlfeat-0.9.18\bin\maci64\test_host
vlfeat-0.9.18\bin\maci64\test_imopv
vlfeat-0.9.18\bin\maci64\test_kmeans
vlfeat-0.9.18\bin\maci64\test_liop
vlfeat-0.9.18\bin\maci64\test_mathop
vlfeat-0.9.18\bin\maci64\test_mathop_abs
vlfeat-0.9.18\bin\maci64\test_nan
vlfeat-0.9.18\bin\maci64\test_qsort-def
vlfeat-0.9.18\bin\maci64\test_rand
vlfeat-0.9.18\bin\maci64\test_sqrti

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • nc_read
    批量读取某一文件夹下的所有地表潜热通量数据(.NC格式),全球数据,转换为TIFF栅格格式。遥感数据批处理。(Read surface laten heat flux data (.nc) to geotiiff format.)
    2017-08-29 09:48:49下载
    积分:1
  • EZW
    图像压缩经典EZW算法 可提初学者学习参考使用(image compression EZW)
    2013-10-12 14:22:16下载
    积分:1
  • count-rice
    本程序可以使用图像处理算法对图片进行处理,对于一个含有各种物体的图片,如米粒,可以计算物体的个数。使用前请配置好opencv环境。希望对大家学习图像处理和opencv有所帮助...(This procedure can use the image processing algorithm for processing images for a picture with a variety of objects, such as a grain of rice, can calculate the number of objects. Configured before use opencv environment. We would like to learn opencv image processing and help ...)
    2009-04-23 16:05:57下载
    积分:1
  • MSTAR_SAR_1784
    MSTAR数据库中的部分SAR图像,大小限制只传12张,分辨率较大约为1476*1784,适合SAR图像的压缩恢复处理(MSTAR part of SAR image size limit only pass 12, higher resolution of about 1476* 1784, for compressed SAR image restoration processing)
    2016-10-08 10:03:26下载
    积分:1
  • zhezhongThreshhold
    说明:  比较硬阈值、软阈值法图像去噪,并提出折中阈值法去噪(Comparison of hard thresholding, soft thresholding image denoising, and put forward a compromise threshold denoising)
    2008-10-06 14:53:19下载
    积分:1
  • read_envi_image
    IDL中用于读取ENVI格式的遥感卫星影像数据的IDL程序(IDL, ENVI format for reading remote sensing image data on the IDL)
    2013-11-01 09:51:07下载
    积分:1
  • cengxichengxiangshuzifangfa
    层析成像的数学方法与应用-一本关于层析成像的使用方法的详细讲解,对于初学者具有指导性意义。(Mathematical methods and applications of tomography- a detailed on the use of tomography methods to explain, for beginners with a guiding significance.)
    2016-12-14 16:12:25下载
    积分:1
  • matlab_smooth
    说明:  各种平滑算法验证,除在matlab中验证外,word文档中也有详细说明(various smoothing algorithm validation, in addition to verify Matlab, word documents also detail)
    2006-05-05 22:40:42下载
    积分:1
  • rgb_TV
    图像处理,图像修复,TV模型,用于空洞填补等图像处理(hole filling)
    2012-04-14 14:03:06下载
    积分:1
  • 8-(1)
    图像修复是对图像中破损区域进行信息填充,以减少图像破损所带来的信息损失的过程。 传统的图像修复方法需要依赖图像的具体结构来制定相应的修复方法,压缩感知理论的提出,使得可以利 用信号的稀疏性来对图像进行修复。基于K 奇异值分解(KSVD)与形态学成分分析(MCA,Morphological Component Analysis)的图像修复方法首先采用形态学成分分析方法对破损图像进行特征分析,将其分解 为结构部分和纹理部分;然后基于学习型字典KSVD分别对这两部分进行过完备字典训练;最后利用训练得 到的字典实现对破损图像的修复。相比于传统的图像修复方法,该方法具有适应性强、修复效果好等优点(Image inpainting is to fill the missing data in corrupted images and thus to reduce the information loss of damaged image. Traditional inpainting algorithms are dependent on specific structure of target images compressive sensing theory makes is possible to realized image inpainting with signal sparsity. This paper proposes a novel inpainting algorithm based on KSVD and MCA algorithm, which first decomposes the image into texture part and structure part, and then trains the two dictionaries for these two parts with KSVD and reconstructs the original image with these two trained dictionaries. Experiment indicates that the proposed algorithm is of better adaptability and performance as compared with traditional algorithms.)
    2020-07-31 15:08:38下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载