登录
首页 » matlab » traffic-sign-detection-master

traffic-sign-detection-master

于 2018-05-11 发布 文件大小:8293KB
0 95
下载积分: 1 下载次数: 25

代码说明:

  利用SVM模型来完成对交通标志进行检测和识别(The SVM model is used to detect and identify traffic signs.)

文件列表:

traffic-sign-detection-master, 0 , 2016-03-20
traffic-sign-detection-master\.gitignore, 17 , 2016-03-20
traffic-sign-detection-master\SVMModels, 0 , 2016-03-20
traffic-sign-detection-master\SVMModels\mandatory_SVMModel.mat, 508771 , 2016-03-20
traffic-sign-detection-master\SVMModels\prohibitory_SVMModel.mat, 22915 , 2016-03-20
traffic-sign-detection-master\code, 0 , 2016-03-20
traffic-sign-detection-master\code\TSD_readGTData.m, 2924 , 2016-03-20
traffic-sign-detection-master\code\bm_getJaccardCoefficient.m, 908 , 2016-03-20
traffic-sign-detection-master\code\f_apply_svm.m, 523 , 2016-03-20
traffic-sign-detection-master\code\f_display_roi.asv, 362 , 2016-03-20
traffic-sign-detection-master\code\f_display_roi.m, 369 , 2016-03-20
traffic-sign-detection-master\code\f_flip_and_resize.m, 138 , 2016-03-20
traffic-sign-detection-master\code\f_generateColorTrainingData.m, 2295 , 2016-03-20
traffic-sign-detection-master\code\f_generateNegativeTrainingData.m, 1751 , 2016-03-20
traffic-sign-detection-master\code\f_generate_color_features.m, 836 , 2016-03-20
traffic-sign-detection-master\code\f_generate_recognition_testing_data.m, 1719 , 2016-03-20
traffic-sign-detection-master\code\f_generate_recognition_training_data.m, 1866 , 2016-03-20
traffic-sign-detection-master\code\f_hand_pick_color.m, 1679 , 2016-03-20
traffic-sign-detection-master\code\f_hog.m, 1521 , 2016-03-20
traffic-sign-detection-master\code\f_mygradient.m, 309 , 2016-03-20
traffic-sign-detection-master\code\f_template_matching.m, 4288 , 2016-03-20
traffic-sign-detection-master\code\f_train_recognition_svm.m, 381 , 2016-03-20
traffic-sign-detection-master\code\f_train_svm.m, 278 , 2016-03-20
traffic-sign-detection-master\code\io_readTxtFile.m, 2054 , 2016-03-20
traffic-sign-detection-master\code\s_apply_svm_to_data.m, 1499 , 2016-03-20
traffic-sign-detection-master\code\s_flip_and_resize_templates.m, 508 , 2016-03-20
traffic-sign-detection-master\code\s_generateNegativeTrainingData.m, 641 , 2016-03-20
traffic-sign-detection-master\code\s_generate_recognition_test_data.m, 1544 , 2016-03-20
traffic-sign-detection-master\code\s_generate_recognition_training_data.m, 1487 , 2016-03-20
traffic-sign-detection-master\code\s_generate_recognition_training_data.m~, 1800 , 2016-03-20
traffic-sign-detection-master\code\s_get_rois.m, 1072 , 2016-03-20
traffic-sign-detection-master\code\s_readData.m, 292 , 2016-03-20
traffic-sign-detection-master\code\s_test_hue_sat_hist.m, 143 , 2016-03-20
traffic-sign-detection-master\code\s_train_recognition_svm.m, 791 , 2016-03-20
traffic-sign-detection-master\code\temp.mat, 791 , 2016-03-20
traffic-sign-detection-master\danger, 0 , 2016-03-20
traffic-sign-detection-master\danger\templates, 0 , 2016-03-20
traffic-sign-detection-master\danger\templates\template1.png, 746 , 2016-03-20
traffic-sign-detection-master\danger\templates\template10.png, 736 , 2016-03-20
traffic-sign-detection-master\danger\templates\template2.png, 737 , 2016-03-20
traffic-sign-detection-master\danger\templates\template3.png, 739 , 2016-03-20
traffic-sign-detection-master\danger\templates\template4.png, 735 , 2016-03-20
traffic-sign-detection-master\danger\templates\template5.png, 741 , 2016-03-20
traffic-sign-detection-master\danger\templates\template6.png, 739 , 2016-03-20
traffic-sign-detection-master\danger\templates\template7.png, 734 , 2016-03-20
traffic-sign-detection-master\danger\templates\template8.png, 730 , 2016-03-20
traffic-sign-detection-master\danger\templates\template9.png, 729 , 2016-03-20
traffic-sign-detection-master\data, 0 , 2016-03-20
traffic-sign-detection-master\data\negativeSamples.mat, 136761 , 2016-03-20
traffic-sign-detection-master\data\positiveSamples.mat, 35284 , 2016-03-20
traffic-sign-detection-master\data\recognitonModels.mat, 3924325 , 2016-03-20
traffic-sign-detection-master\files, 0 , 2016-03-20
traffic-sign-detection-master\files\gt.txt, 35282 , 2016-03-20
traffic-sign-detection-master\files\readme, 0 , 2016-03-20
traffic-sign-detection-master\files\readme\ReadMe.txt, 3256 , 2016-03-20
traffic-sign-detection-master\files\readme\gt.txt, 35282 , 2016-03-20
traffic-sign-detection-master\mandatory, 0 , 2016-03-20
traffic-sign-detection-master\mandatory\00001.mat, 2916105 , 2016-03-20
traffic-sign-detection-master\mandatory\templates, 0 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template1.png, 751 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template10.png, 742 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template11.png, 740 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template2.png, 750 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template3.png, 747 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template4.png, 742 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template5.png, 744 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template6.png, 739 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template7.png, 743 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template8.png, 742 , 2016-03-20
traffic-sign-detection-master\mandatory\templates\template9.png, 738 , 2016-03-20
traffic-sign-detection-master\prohibitory, 0 , 2016-03-20
traffic-sign-detection-master\prohibitory\00001.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00002.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00003.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00004.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00005.mat, 42713 , 2016-03-20
traffic-sign-detection-master\prohibitory\00006.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00007.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00008.mat, 42730 , 2016-03-20
traffic-sign-detection-master\prohibitory\00009.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00010.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00011.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00012.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00013.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00014.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00015.mat, 42765 , 2016-03-20
traffic-sign-detection-master\prohibitory\00016.mat, 42889 , 2016-03-20
traffic-sign-detection-master\prohibitory\00017.mat, 42713 , 2016-03-20
traffic-sign-detection-master\prohibitory\00018.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00019.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00020.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00021.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00022.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00023.mat, 42763 , 2016-03-20
traffic-sign-detection-master\prohibitory\00024.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00025.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00026.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00027.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00028.mat, 7892 , 2016-03-20
traffic-sign-detection-master\prohibitory\00029.mat, 7892 , 2016-03-20

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 水下像去雾与增强
    说明:  这篇论文提出了一种较好的水下图像增强的方法。首先使用经过端到端训练的卷积神经网络去测量输入图片,同时以自适应双边滤波器对传输图片进行处理。接着提出一种基于白平衡的策略来消除图片的颜色偏差,用拉普拉斯金字塔融合获得无雾和色彩校正图像的融合结果。 最后,输出图像被转换为混合小波和方向滤波器组(HWD)域,用于去噪和边缘增强。 实验结果表明,该方法可以消除颜色失真,提高水下图像的清晰度。(This paper proposes a better underwater image enhancement method. Firstly, an end-to-end training convolutional neural network is used to measure the input image, and an adaptive bilateral filter is used to process the transmitted image. Then a strategy based on white balance is proposed to eliminate the color deviation of images. The fusion results of fog-free and color correction images are obtained by Laplacian pyramid fusion. Finally, the output image is converted into hybrid wavelet and directional filter bank (HWD) domain for denoising and edge enhancement. The experimental results show that the method can eliminate color distortion and improve the clarity of underwater images.)
    2020-11-02 14:59:54下载
    积分:1
  • chambolle projection
    应用投影算法对TV模型快速求解,并将算法应用到图像去噪中(The projection algorithm is used to solve the TV model quickly, and the algorithm is applied to image denoising)
    2017-11-05 14:42:43下载
    积分:1
  • 555712
    RGB颜色转换源码程序,根据RDB颜色组成结构,使用位运算实现RGB颜色转换。(RGB color conversion source program, according to RDB color composition structure, using bit operations to achieve the RGB color conversion.)
    2014-12-09 22:47:54下载
    积分:1
  • TBD
    TBD,检测前跟踪算法的仿真程序,比较多的文件,自己区分(TBD, tracking algorithm pre-test simulation procedures, a relatively large number of documents, to distinguish between their own)
    2009-06-22 17:36:09下载
    积分:1
  • interp
    用于图象的复原处理,可以对多张同样角度拍摄的图片进行分析,得到清晰的放大图. superresulution(Rehabilitation treatment for the image can be more than the same angle picture taken for analysis have been given clear Enlargement. superresulution)
    2020-11-30 21:39:29下载
    积分:1
  • program
    一个很好的图像处理程序 A good image handler(A very good image processing program is A good image handler)
    2017-07-09 15:49:16下载
    积分:1
  • 频域滤波器
    说明:  频域滤波器器的一些相关实验和滤波器的实现(包括理想低通,Butterworth低通,高斯低通,理想高通,Butterworth高通,高斯高通滤波器)(Some related experiments of frequency-domain filter and Realization of filter (including ideal low-pass, Butterworth low-pass, Gauss low-pass, ideal high pass, Butterworth high pass, Gauss high pass filter))
    2020-04-21 12:16:54下载
    积分:1
  • susan
    说明:  susan算法是基于灰度的特征点获取方法,适用于图像的边缘提取(susan algorithm is based on the gray-scale method to obtain the feature points for image edge extraction)
    2008-12-03 22:18:48下载
    积分:1
  • TestFrm
    一个示波器的框架(the framework of an oscilloscope)
    2004-08-26 11:28:15下载
    积分:1
  • ConeBeamReconstruction
    FDK最小角度重建,基于parker加权的投影数据处理实现的最小角度重见(FDK minimum angle reconstruction, the minimum angle parker weighted projection data processing based on the realization Shigemi)
    2014-05-04 09:43:44下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载