登录
首页 » matlab » CNN

CNN

于 2018-05-11 发布 文件大小:14402KB
0 110
下载积分: 1 下载次数: 48

代码说明:

  CNN卷积神经网络,能以高速将图像精确到的分类,给力。(CNN convolutional neural network with high speed, accurate to classify images, awesome.)

文件列表:

DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\.travis.yml, 249 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeapplygrads.m, 1219 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caebbp.m, 917 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caebp.m, 1011 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caedown.m, 259 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeexamples.m, 754 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caenumgradcheck.m, 3618 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caesdlm.m, 845 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caetrain.m, 1148 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeup.m, 489 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\max3d.m, 173 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\scaesetup.m, 1937 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\scaetrain.m, 270 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnapplygrads.m, 575 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnbp.m, 2141 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnff.m, 1774 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnnumgradcheck.m, 3430 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnsetup.m, 2020 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnntest.m, 193 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnntrain.m, 845 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CONTRIBUTING.md, 544 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbnsetup.m, 557 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbntrain.m, 232 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbnunfoldtonn.m, 425 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmdown.m, 90 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmtrain.m, 1401 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmup.m, 89 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\LICENSE, 1313 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnapplygrads.m, 628 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnbp.m, 1638 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnchecknumgrad.m, 704 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nneval.m, 772 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnff.m, 1849 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnpredict.m, 188 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnsetup.m, 1844 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nntest.m, 180 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nntrain.m, 2414 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnupdatefigures.m, 1858 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\README.md, 8730 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\README_header.md, 2256 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\REFS.md, 950 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE\saesetup.m, 132 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE\saetrain.m, 308 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\create_readme.sh, 744 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\data, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\data\mnist_uint8.mat, 14735220 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\runalltests.m, 165 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_CNN.m, 981 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_DBN.m, 1031 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_NN.m, 3247 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_SAE.m, 934 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\allcomb.m, 2618 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\expand.m, 1958 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flicker.m, 208 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flipall.m, 80 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\fliplrf.m, 543 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flipudf.m, 576 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\im2patches.m, 313 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\isOctave.m, 108 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\makeLMfilters.m, 1895 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\myOctaveVersion.m, 169 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\normalize.m, 97 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\patches2im.m, 242 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\randcorr.m, 283 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\randp.m, 2083 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\rnd.m, 49 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\sigm.m, 48 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\sigmrnd.m, 126 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\softmax.m, 256 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\tanh_opt.m, 54 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\visualize.m, 1072 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\whiten.m, 183 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\zscore.m, 137 , 2014-01-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 实验一
    说明:  像素与图像基本指标—彩色图像的基本信息、像素颜色值、图像的大小、矩阵形式等、对灰度图像计算有关统计参数:(1)图像的大小;(2)图像的灰度平均值;(3)图像的自协方差;(4)图像的灰度标准差、对图像进行45度,19度,98度等任意角度的旋转,并计算原图与旋转后图像的相关系数和协方差矩阵(Pixel and Basic Index of Image)
    2019-04-07 16:01:00下载
    积分:1
  • opencv算法(softskin.cpp)
    opencv图像处理算法
    2020-12-01下载
    积分:1
  • 20064817924orl_faces_112x92
    说明:  ORL人脸图像库,共40人,每人10幅图像,其中每人的前5幅作为训练样本,后5幅作为测试分类样本,统计正确分类率。分类准则为最近邻规则。 真实的图像尺寸为112x92,列向量堆积对应人脸库矩阵的每一列。 (ORL face image database, a total of 40 per 10 images, each of which the first five as training samples, after the 5 categories as a test sample, correct classification rate statistics. Classification criteria for the nearest neighbor rule. The real image size is 112x92, the corresponding column vector face database matrix accumulation of each column.)
    2010-03-31 17:47:06下载
    积分:1
  • DCT2-lele
    利用蝶形算法类似于FFT,利用先行再列实现二维DCT。速度很快。包含反DCT的代码。(similar to the use of butterfly FFT algorithm, the first re-use of 2D DCT out. Very fast. Contain anti- DCT code.)
    2007-06-10 20:31:36下载
    积分:1
  • particalfilter
    粒子滤波器(particle filter)程序,用粒子滤波器跟踪运动物体。(Particle filter (particle filter) process, with particle filter to track moving objects.)
    2021-01-22 11:28:46下载
    积分:1
  • spectral-clustering
    外国人编写的实现谱聚类算法,执行速度较快,效果不错~(Foreigners prepared to achieve spectral clustering, perform faster, the effect is good ~)
    2011-07-02 19:53:44下载
    积分:1
  • grayturn
    将彩色图像灰度化,使在处理过程中数据处理简单化(gray color image, so that in the course of handling the data processing simplistic)
    2007-05-24 15:44:59下载
    积分:1
  • MeanShiftSegMent
    根据D. Comaniciu, P. Meer: Mean Shift: A robust approach toward feature space analysis 以及 C. Christoudias, B. Georgescu, P. Meer: Synergism in low level vision.这两篇文献提供的方法编写的图像分割代码,作者是 Chris M. Christoudias, Bogdan Georgescu,代码经我看了后加了丰富的中文注释,希望可以给各位带来阅读上的方便。 基于meanshift的聚类分割方法包括滤波、区域融合等操作,通过调整sigma和sigmar来调整分割效果。(According to D. Comaniciu, P. Meer: Mean Shift: A robust approach toward feature space analysis, and C. Christoudias, B. Georgescu, P. Meer: Synergism in low level vision. These two documents prepared by the methods provided by image segmentation code , the author is Chris M. Christoudias, Bogdan Georgescu, after I read the code, add a rich Chinese notes, hoping to bring you the convenience of reading. Segmentation method based on clustering meanshift including filtering, regional integration and other operations, and by adjusting the sigma sigmar to adjust segmentation results.)
    2013-07-30 19:01:52下载
    积分:1
  • BMPprossing
    C处理BMP图像程序,有点缺陷,请大家指出。共同进步(C procedures for handling BMP image, a little flaw, please point out. Common progress)
    2009-10-22 13:45:36下载
    积分:1
  • image
    立体匹配sad算法,matlab基于SAD法对左右两幅图片进行匹配,并生成深度图像。.m文件。(Stereo matching sad algorithm)
    2018-05-15 17:12:49下载
    积分:1
  • 696518资源总数
  • 104360会员总数
  • 40今日下载