登录
首页 » matlab » CNN

CNN

于 2018-05-11 发布 文件大小:14402KB
0 109
下载积分: 1 下载次数: 48

代码说明:

  CNN卷积神经网络,能以高速将图像精确到的分类,给力。(CNN convolutional neural network with high speed, accurate to classify images, awesome.)

文件列表:

DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\.travis.yml, 249 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeapplygrads.m, 1219 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caebbp.m, 917 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caebp.m, 1011 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caedown.m, 259 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeexamples.m, 754 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caenumgradcheck.m, 3618 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caesdlm.m, 845 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caetrain.m, 1148 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\caeup.m, 489 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\max3d.m, 173 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\scaesetup.m, 1937 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CAE\scaetrain.m, 270 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnapplygrads.m, 575 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnbp.m, 2141 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnff.m, 1774 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnnumgradcheck.m, 3430 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnnsetup.m, 2020 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnntest.m, 193 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CNN\cnntrain.m, 845 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\CONTRIBUTING.md, 544 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbnsetup.m, 557 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbntrain.m, 232 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\dbnunfoldtonn.m, 425 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmdown.m, 90 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmtrain.m, 1401 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\DBN\rbmup.m, 89 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\LICENSE, 1313 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnapplygrads.m, 628 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnbp.m, 1638 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnchecknumgrad.m, 704 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nneval.m, 772 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnff.m, 1849 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnpredict.m, 188 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnsetup.m, 1844 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nntest.m, 180 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nntrain.m, 2414 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\NN\nnupdatefigures.m, 1858 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\README.md, 8730 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\README_header.md, 2256 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\REFS.md, 950 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE\saesetup.m, 132 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\SAE\saetrain.m, 308 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\create_readme.sh, 744 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\data, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\data\mnist_uint8.mat, 14735220 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\runalltests.m, 165 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_CNN.m, 981 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_DBN.m, 1031 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_NN.m, 3247 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_example_SAE.m, 934 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util, 0 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\allcomb.m, 2618 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\expand.m, 1958 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flicker.m, 208 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flipall.m, 80 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\fliplrf.m, 543 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\flipudf.m, 576 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\im2patches.m, 313 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\isOctave.m, 108 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\makeLMfilters.m, 1895 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\myOctaveVersion.m, 169 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\normalize.m, 97 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\patches2im.m, 242 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\randcorr.m, 283 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\randp.m, 2083 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\rnd.m, 49 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\sigm.m, 48 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\sigmrnd.m, 126 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\softmax.m, 256 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\tanh_opt.m, 54 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\visualize.m, 1072 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\whiten.m, 183 , 2014-01-12
DeepLearnToolbox-7c23709e940a8388f26e0377d47dae076a449fc6\util\zscore.m, 137 , 2014-01-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • compare_segmentations
    用于评价图像分割算法性能的代码,包中的word文档对所用方法进行了简单的说明,还列出了具体的参考文献(Image segmentation algorithm for evaluating the performance of the code, including the word document on the methods for a simple explanation, but also a list of specific references)
    2009-04-14 16:56:17下载
    积分:1
  • NRSS
    说明:  用于无参考图像质量评价,用MATLAB语言编写(For no-reference image quality evaluation)
    2019-06-10 09:21:17下载
    积分:1
  • Edge_Enhancement_Adaptive_Anisotropic_Diffusion
    说明:  完成基于各向异性的自适应超声图像去噪和边缘增强方法,参考Adaptive Anisotropic Diffusion for Ultrasonic Image Denoising and Edge Enhancement.pdf,加入了m参数(The completion of ultrasound-based adaptive anisotropic image denoising and edge enhancement method, reference Adaptive Anisotropic Diffusion for Ultrasonic Image Denoising and Edge Enhancement.pdf, joined the m parameters)
    2009-08-18 09:42:32下载
    积分:1
  • matlab去模糊算法代码
    说明:  matlab图像去模糊算法代码,使用两倍长度的点扩散函数进行维纳滤波,模糊图像加入随机噪声,计算噪声信号功率比,使用噪声能量和图像一维自相关函数进行维纳滤波,模糊后的图像,减小噪声能量进行规则化滤波,增大拉格朗日乘子进行滤波,继续对恢复的图像反卷积,产生模糊图像,最初的PSF,显示最初PSF下恢复的PSF。(MATLAB image deblurring algorithm code, using double-length point spread function for Wiener filtering, adding random noise to blurred image, calculating noise signal power ratio, using noise energy and image one-dimensional autocorrelation function for Wiener filtering, blurred image, reducing noise energy for regular filtering, increasing Lagrange multiplier for filtering, continue to restore the image. Like deconvolution, a blurred image is generated. The original PSF displays the restored PSF under the original PSF.)
    2019-03-21 19:44:09下载
    积分:1
  • SURF
    图像处理,matlab文件,利用SURF进行图像拼接,完成图像配准(Image processing, matlab files, image stitching using SURF, image registration completed)
    2020-06-20 04:20:02下载
    积分:1
  • lypp
    通过邻域搜索法对一个相机拍摄的序列图像中圆形非编码标志点进行匹配(Neighborhood search method by camera on a circular non-coding sequence of images to match landmarks )
    2020-12-18 21:19:10下载
    积分:1
  • histogram-equalization
    直方图均衡化的几个改进算法程序:BBHE,DSIHE,MMBEBHE(Several improvements histogram equalization algorithm: BBHE, DSIHE, MMBEBHE)
    2014-04-24 21:36:37下载
    积分:1
  • work
    垂直投影算法。可以直接在matlab上跑(err)
    2008-06-17 18:59:35下载
    积分:1
  • watermark_paper
    首先将二值水印图像经过降维操作转化为一维序列,再将一维序列与m 序列做扩频 调制,最后对音频信号进行分段离散余弦变换,把经过调制的水印信号经过量化处理过程嵌入到离 散余弦变换后的系数中 提取水印时对含水印信号的音频信号也进行分段离散余弦变换,然后利用 原始音频信号提取水印. 实验证明了该技术的鲁棒性和不可感知性.
    2020-12-06 20:19:22下载
    积分:1
  • image-segment
    图象分割程序:先用梯度函数进行边缘检测,然后二值化后分割图象(Image segmentation process: first the gradient edge detection function, and then after binarization image segmentation)
    2007-09-30 10:47:54下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载