gaot
代码说明:
tep 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设 置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。(Matlab genetic algorithm toolbox)
文件列表:
gaot\gaot\adjswapMutation.m
gaot\gaot\arithXover.m
gaot\gaot\b2f.m
gaot\gaot\binaryExample.m
gaot\gaot\binaryMutation.m
gaot\gaot\boundaryMutation.m
gaot\gaot\calcbits.m
gaot\gaot\Contents.m
gaot\gaot\coranaEval.m
gaot\gaot\coranaFeval.m
gaot\gaot\coranaMin.m
gaot\gaot\cyclicXover.m
gaot\gaot\delta.m
gaot\gaot\dists.m
gaot\gaot\EER.m
gaot\gaot\enhancederXover.m
gaot\gaot\erXover.m
gaot\gaot\f2b.m
gaot\gaot\floatExample.m
gaot\gaot\floatGradExample.m
gaot\gaot\ga.m
gaot\gaot\gademo.m
gaot\gaot\gademo1.m
gaot\gaot\gademo1eval1.m
gaot\gaot\gademo2.m
gaot\gaot\gademo3.m
gaot\gaot\gaMichEval.m
gaot\gaot\gaotv5.ps
gaot\gaot\gaZBGrad.m
gaot\gaot\gaZBGradEval.m
gaot\gaot\heuristicXover.m
gaot\gaot\initializega.m
gaot\gaot\initializeoga.m
gaot\gaot\inversionMutation.m
gaot\gaot\linerorderXover.m
gaot\gaot\maxGenTerm.m
gaot\gaot\multiNonUnifMutation.m
gaot\gaot\nonUnifMutation.m
gaot\gaot\normGeomSelect.m
gaot\gaot\optMaxGenTerm.m
gaot\gaot\orderBasedExample.m
gaot\gaot\orderbasedXover.m
gaot\gaot\parse.m
gaot\gaot\partmapXover.m
gaot\gaot\plotCorana.m
gaot\gaot\README
gaot\gaot\roulette.m
gaot\gaot\shiftMutation.m
gaot\gaot\simpleXover.m
gaot\gaot\singleptXover.m
gaot\gaot\startup.m
gaot\gaot\swapMutation.m
gaot\gaot\threeswapMutation.m
gaot\gaot\tournSelect.m
gaot\gaot\tspEval.m
gaot\gaot\unifMutation.m
gaot\gaot\uniformXover.m
gaot\gaot
gaot
下载说明:请别用迅雷下载,失败请重下,重下不扣分!