登录
首页 » matlab » 基于深度图像的图像修复算法

基于深度图像的图像修复算法

于 2020-11-06 发布 文件大小:33749KB
0 130
下载积分: 1 下载次数: 63

代码说明:

  基于深度图像的图像修复算法,首先得到待修复图像的深度图像,然后利用图像的深度图对破损区域进行修复。(Based on the image restoration algorithm of depth image, the depth image of the image to be repaired is obtained, and then the damaged region is repaired by using the depth map of the image.)

文件列表:

基于深度图的图像修复
....................\depth-aided inpainting for disocclusion restoration of multi-view images using depth-image-based rendering.pdf,555232,2016-11-08
....................\基于深度信息的图像修复算法.pdf,910010,2016-11-01
....................\深度图像修补
....................\............\color.bmp




....................\............\depth.bmp,2359350,2011-10-21
....................\............\depth2.bmp,10128,2016-11-01
....................\............\depth3.bmp,38030,2016-11-01
....................\............\depth4.bmp,60457,2016-11-01
....................\............\impainting.m,1934,2016-11-01
....................\............\result.bmp,2359350,2016-11-01
....................\............\result2.bmp,289242,2016-11-01
....................\............\result3.bmp,1021698,2016-11-01
....................\............\result4.bmp,984114,2016-11-01
....................\深度图获取
....................\..........\ASW
....................\..........\...\boxfilter.m,950,2014-11-12
....................\..........\...\coldiff.m,315,2015-03-28
....................\..........\...\coldiff1.m,936,2016-03-11
....................\..........\...\Cp.m,553,2015-04-02
....................\..........\...\downcostagg.m,1031,2015-09-03

....................\..........\...\leftcostagg.m,1009,2015-09-03
....................\..........\...\logRGB.m,266,2015-03-31
....................\..........\...\midcostagg.m,404,2016-03-16
....................\..........\...\rightcostagg.m,1058,2015-09-03
....................\..........\...\runstereo.m,1478,2016-03-17
....................\..........\...\sdiff.m,238,2015-03-28
....................\..........\...\sdiff1.m,404,2016-03-11
....................\..........\...\Untitled.m,1174,2016-03-17
....................\..........\...\Untitled1.m,1625,2015-04-16
....................\..........\...\upcostagg.m,968,2015-09-03
....................\..........\guided filter
....................\..........\.............\AdaptiveManifoldFilter-Source-v1.0
....................\..........\.............\..................................\adaptive_manifold_filter.m,9028,2014-11-12
....................\..........\.............\..................................\boxfilter.m,950,2014-11-12
....................\..........\.............\..................................\compute_manifold_tree_height.m,1372,2014-11-12
....................\..........\.............\..................................\compute_non_local_means_basis.m,1977,2014-11-12
....................\..........\.............\..................................\example_color_detail_enhancement.m,1763,2014-11-12
....................\..........\.............\..................................\example_edge_aware_filtering.m,1581,2014-11-12
....................\..........\.............\..................................\example_extra_information_denoising.m,2553,2014-11-12
....................\..........\.............\..................................\example_non_local_means_denoising.m,2183,2014-11-12
....................\..........\.............\..................................\example_referenceForCVPR11.m,6001,2014-11-22
....................\..........\.............\..................................\example_Table_1.m,1329,2014-11-12
....................\..........\.............\..................................\fillPixelsReference.m,1153,2014-11-12
....................\..........\.............\..................................\filtermask.m,1140,2014-11-12
....................\..........\.............\..................................\guidedfilter_color.m,2704,2014-11-12
....................\..........\.............\..................................\hs_err_pid3508.log,20497,2014-11-12
....................\..........\.............\..................................\h_filter.m,1843,2014-11-12
....................\..........\.............\..................................\image
....................\..........\.............\..................................\.....\af










....................\..........\.............\..................................\.....\view1.png,342036,2003-06-08
....................\..........\.............\..................................\.....\view5.png,343316,2003-06-08
....................\..........\.............\..................................\.....\单纯导向





....................\..........\.............\..................................\images





....................\..........\.............\..................................\......\cones4.jpg,57152,2014-11-12
....................\..........\.............\..................................\......\cones5.jpg,56887,2014-11-12
....................\..........\.............\..................................\......\cones6.jpg,55757,2014-11-12
....................\..........\.............\..................................\......\eyes_closeup_smaller.png,340288,2014-11-12
....................\..........\.............\..................................\......\kodim23.png,562293,2014-11-12
....................\..........\.............\..................................\keep.m,1871,2014-11-12
....................\..........\.............\..................................\README.txt,3462,2014-11-12
....................\..........\.............\..................................\RF_filter.m,2999,2014-11-12
....................\..........\.............\..................................\runStereoMatcher.m,1929,2014-11-22
....................\..........\.............\..................................\weightedMedianMatlab.m,949,2014-11-12
....................\..........\.............\article_lr.pdf,601480,2014-11-15
....................\..........\.............\boxfilter.m,950,2014-11-12
....................\..........\.............\census.m,329,2015-06-02
....................\..........\.............\example_referenceForCVPR11.m,4427,2015-09-06
....................\..........\.............\fillPixelsReference.m,1145,2011-03-30
....................\..........\.............\filtercode.zip,4191873,2014-11-17
....................\..........\.............\filtermask.m,798,2011-03-29
....................\..........\.............\funcptK.m,639,2015-06-02
....................\..........\.............\funcptseg.m,939,2014-12-10
....................\..........\.............\gradTmpl.pgm,327538,2016-11-01
....................\..........\.............\gradTmpr.pgm,327538,2016-11-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • hog_matlab
    说明:  hog 特征 基于matlab的 RGB提取(realize the hog feature)
    2019-04-02 09:57:26下载
    积分:1
  • Track_4
    MAD相似性度量准则的改进,实现模板匹配程序(MAD similarity measurement criteria to improve and achieve template matching procedures)
    2007-07-10 22:49:13下载
    积分:1
  • kuaisutisheng
    针对CT 医学图像和MR I 医学图像成像特点, 提出了基于快速整数提升小波变换的融合方法。在CT 和 MR I 两幅医学图像配准的前提下, 利用提升小波变换把图像分解成低频和高频子图像, 对于小波变换后的高频 子图像, 选择区域标准差大的作为融合后的子图像 对于低频子图像, 采用加权融合, 最后进行小波逆变换, 得到 融合后的图像, 并对融合后图像用信息熵、平均梯度、相关系数的指标进行评价。实验结果表明, 基于快速整数提 升小波变换融合中, 小波高低频系数采用不同的规则能够取得更好的融合效果, 其轮廓清晰。该算法能够提升融 合后的医学图像信息量, 同时有效地保护图像的细节信息, 在执行时间和图像质量上均优于普通小波算法。(A imed at the characterist ics of CT andMR Imedical images, a new image fu sion al2 go rithm based on the fast in t lif t ing w avelet t ran sfo rm s is p ropo sed. Two o riginal images are decompo sed by the fast in t lif t ing w avelet t ran sfo rm s. The fu sion ru le based on the max imum standard deviat ion value variance is u sed to fu se the h igh f requency sub2image, w h ile a w eigh t2 ed average fu sed ru le is app lied by coeff icien t s of the low f requency. F inally, the fu sion image is recon st ructed fo r perfo rm ing inverse fast in t lif t ing w avelet t ran sfo rm s. The fu sion image is evaluated by en t ropy, average gradien t, and co rrelat ion coeff icien t s. Experimen tal resu lt show s that the fu sion image hasmo re info rmat ion than o riginal images and imp roves the quali2 ty of o riginal images. M eanw h ile, the fu sion image p ro tect s detail characterist ics of the image, thu s the real2t ime p rocess and image qualit ies are w ell than tha)
    2021-04-21 10:18:49下载
    积分:1
  • rader1
    说明:  雷达模拟LFM脉冲信号,模拟目标回波(目标距离50km,速度100m/s)和噪声信号(信噪比)(Radar simulated LFM pulse signal, simulated target echo (target distance 50km, speed 100M / s) and noise signal (signal-to-noise ratio))
    2020-04-12 11:38:29下载
    积分:1
  • 数字——使用MATLAB分析与实现
    说明:  本压缩包主要包括数字图像处理——使用MATLAB分析与实现的源代码(This compression package mainly includes digital image processing - using MATLAB analysis and implementation of the source code)
    2021-01-25 19:27:43下载
    积分:1
  • FuzzyAGV
    用C charp编写的图像滤镜效果,包括源代码。(Image filter effects)
    2014-01-03 09:05:00下载
    积分:1
  • FaceDetect(mathworks)
    Viola-Jones Fast Face Detection的matlab实现。(Viola-Jones Fast Face Detection Mex Implementation)
    2009-07-06 14:00:49下载
    积分:1
  • NPCR_and_UACI.m
    计算图像处理中的评价指标NPCR和UACI(Calculate the evaluation indexes NPCR and UACI)
    2021-01-08 17:28:51下载
    积分:1
  • mycombine
    进行图像区域合并操作,能够较为有效,较好的进行图像合并(combine the image,very effcient)
    2014-05-21 20:29:55下载
    积分:1
  • quantum
    量子图像加密 模拟BB84规则 对图像进行加密(quantum signal processing)
    2020-11-04 10:09:51下载
    积分:1
  • 696518资源总数
  • 104228会员总数
  • 45今日下载